

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

OpenDoc Cookbook

For the Mac OS

This document was created with FrameMaker 4.0.4

CookbookBook : Title Page 1 Thursday, December 7, 1995 4:59 PM

ð

Apple Computer, Inc.

 1995 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.
Printed in the United States of
America.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple
Macintosh computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for printing or clerical
errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript,
LaserWriter, Macintosh, MPW,
OpenDoc, and QuickTime are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.

Apple Press and the Apple Press
signature are trademarks of Apple
Computer, Inc.

QuickDraw and ResEdit are
trademarks of Apple Computer, Inc.
PostScript is a trademark of Adobe
Systems Incorporated, which may
be registered in certain jurisdictions.
Helvetica and Palatino are
registered trademarks of
Linotype-Hell AG and/or its
subsidiaries.
SOM, SOMobjects, and System
Object Model are registered
trademarks of International
Business Machines Corporation.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

ISBN 0-201-47956-7
1 2 3 4 5 6 7 8 9-MA-0099989796
First Printing, January 1996

Library of Congress Cataloging-in-Publication Data

Apple Computer, Inc.
OpenDoc cookbook for the Mac OS.

p. cm.
Includes index.
ISBN 0-201-47956-7
1. Cross-platform software development. 2. Macintosh
(Computer)-Programming. I. Title.

QA76.76.D47A64 1996
005.7--dc20 95-47803

CIP

This document was created with FrameMaker 4.0.4

CookbookBook : Copyright Page 2 Thursday, December 7, 1995 4:59 PM

3

Contents

Listings 9

Preface

About This Book

11

Who Should Read This Book 11
Structure of This Book 11
Typographic Conventions 12

Special Font 12
Types of Notes 12
Coding Conventions 13

Identifier Names 13
Class Definitions 13

Developer Products and Support 14
APDA 14
CI Labs 15

Chapter 1

Development Environment

17

Setting Up 19
OpenDoc Build Support 19

Building SamplePart 20
Using the Build Script 20
Examples 21
Setting OpenDoc Flags 22
Using Precompiled Headers 23

Installing OpenDoc 23
Installer 23
Editors Folders 23
Resource Cache 23
Aliases 24
Apple Guide Help Files 24
The Stationery Folder 24

Installing and Running Part Editors 25

This document was created with FrameMaker 4.0.4

CookbookBook : CookbookTOC Page 3 Thursday, December 7, 1995 4:59 PM

4

Installing Part Editors 25
Creating Stationery 25
Creating Documents 25
Running Parts 26

Chapter 2

SamplePart Tutorial

27

Features of SamplePart 31
SamplePart Structure 31

SamplePart System Object Model Interface 32
Calling Inherited Methods 32
SOM Wrapper Class and Part Wrapper Object 32

SamplePart File Structure 33
SamplePart Class Definition 33
Shared Global Variables 37
Initialization 39

The Constructor 40
The InitPart Method 40
The InitPartFromStorage Method 42
The Initialize Method 44

Opening the Part Into a Window 46
The Open Method 47
The CreateWindow Method 50

Handling Frame Layout 53
The DisplayFrameAdded Method 53
The DisplayFrameConnected Method 55
The DisplayFrameRemoved Method 57
The DisplayFrameClosed Method 59
The AttachSourceFrame Method 60
The FrameShapeChanged Method 61

Drawing the Part 62
The Draw Method 63
The DrawIconView Method 64
The DrawThumbnailView Method 66
The DrawFrameView Method 67
The ViewTypeChanged Method 70
The GeometryChanged Method 74

CookbookBook : CookbookTOC Page 4 Thursday, December 7, 1995 4:59 PM

5

The HighlightChanged Method 74
The FacetAdded Method 75
The FacetRemoved Method 76

Handling Events 77
Event Constants 77
The HandleEvent Method 78
The HandleMouseEvent Method 80
The HandleMenuEvent Method 83
The AdjustMenus Method 85
The DoDialogBox Method 87
The View As Window Command 90

Activation 90
The BeginRelinquishFocus Method 90
The CommitRelinquishFocus Method 91
The FocusLost Method 92
The AbortRelinquishFocus Method 93
The FocusAcquired Method 93
The PartActivated Method 94
The ActivateFrame Method 95
The WindowActivating Method 96

Persistent Storage 97
The Externalize Method 98
The CheckAndAddProperties Method 99
The CleanseContentProperty Method 101
The ExternalizeStateInfo Method 102
The ExternalizeContent Method 104
The CloneInto Method 104
The InternalizeContent Method 105
The InternalizeStateInfo Method 106
The ReadPartInfo Method 107
The WritePartInfo Method 110
The ClonePartInfo Method 112
The Release Method 113
The ReleaseAll Method 114
The Purge Method 115
The SetDirty Method 117

Defining Types and Constants 118
Defining Resources 122

CookbookBook : CookbookTOC Page 5 Thursday, December 7, 1995 4:59 PM

6

OpenDoc-OLE Interoperability 122
Menu IDs 123
Bundle Resources 123
Version Numbers 124
Code Fragment Resources 127
Name-Mapping Resources 129

Mapping Kind to Category 129
Mapping Editor to Kind 130
Mapping ISO Strings to User-Readable Names 131
Mapping Kind to Mac OS Type 133

Chapter 3

Where To Go From Here

135

SoundEditor 137
PictureViewer 138
TextEditor 138
DrawEditor 139
ScriptRunner 140

Appendix A

OpenDoc Utilities

143

Exception Handling (Except) 144
Using the Exception-Handling Utility 144
The Exception-Handling Scheme 144

Throwing Exceptions 146
Exception Handlers 147

The SOM Environment Parameter 148
Handling SOM Exceptions 149

Automatic Environment Checking 150
Coding Precautions 152

Make Variables That You Modify Volatile 152
Data Value Manipulation (FlipEnd) 153

Conversion Functions 154
Conversion Macros 156

QuickDraw Focus Library (FocusLib) 158
What the Focus Library Does 158

CookbookBook : CookbookTOC Page 6 Thursday, December 7, 1995 4:59 PM

7

What the Focus Library Does Not Do 158
Using the Focus Library From C++ 159
Using the Focus Library From C 160
PostScript Printing 161

International Text (IText) 161
Creation in default heap 161
Destruction 162
Duplication 163
Accessing attributes 163
Accessing the string 164

Memory Management (ODMemory) 165
Allocating Heaps 166
Allocating Nonrelocatable Blocks 167
Allocating Relocatable Blocks (Handles) 168
Memory Debugging 169

Object Handling (ODUtils) 171
Standard Type Input and Output (StdTypIO) 173

Boolean Values 174
Short Values 174
Long Values 174
ISO String Values 175
Type List Values 175
Text Values 176
Time Values 177
Geometric Values 177
Storage Unit Reference Values 178
Icon Family Values 178

Storage (StorUtil) 179
Storage Utility Functions 179

Temporary Objects (TempObj) 180
Need for Temporary Objects 180
Using Temporary Objects 181
Pitfalls 181
Using Temporary Iterators 182
Adding New Temporary Classes 183

Adding New Classes Using Templates 183
Adding New Classes Without Using Templates 183
Type-Checking Errors 184

CookbookBook : CookbookTOC Page 7 Thursday, December 7, 1995 4:59 PM

8

Resource Handling (UseRsrcM) 185
Setting Up the Build System 185
Initializing Your Library 185
Accessing Your Library’s Resources 187
For C++ Users 188
Resource-Loading Utilities 190

Window Utilities (WinUtils) 191
Retrieving Window Properties 191
Using the Window Utilities 191

Appendix B

System Object Model

193

Features of the System Object Model 193
Development Process 194
Interface Definition Language 194

The SOM Interface of SamplePart 195
The Class Definition 195
Implementation Template 198
Define and Include Directives 198
Function Prototype 199
Parameter List 200
Default Method Calls 200

Index

203

CookbookBook : CookbookTOC Page 8 Thursday, December 7, 1995 4:59 PM

9

Listings

Chapter 2 SamplePart Tutorial

Listing 2-1

SamplePart

 class definition 34

Listing 2-2

SamplePart global variables 38

Listing 2-3

SamplePart

 constructor 40

Listing 2-4

InitPart

 method 42

Listing 2-5

InitPartFromStorage

 method 43

Listing 2-6

Initialize

 method 45

Listing 2-7

Open

 method 49

Listing 2-8

CreateWindow

 method 51

Listing 2-9

DisplayFrameAdded

 method 54

Listing 2-10

DisplayFrameConnected

 method 56

Listing 2-11

DisplayFrameRemoved

 method 58

Listing 2-12

DisplayFrameClosed

 method 59

Listing 2-13

AttachSourceFrame

method 60

Listing 2-14

FrameShapeChanged

method 61

Listing 2-15

Draw

 method 64

Listing 2-16

DrawIconView

 method 65

Listing 2-17

DrawThumbnailView

 method 66

Listing 2-18

DrawFrameView

 method 68

Listing 2-19

ViewTypeChanged

 method 71

Listing 2-20

GenerateThumbnail

 method 72

Listing 2-21

LoadThumbnail

 method 72

Listing 2-22

CalcNewUsedShape

 method 72

Listing 2-23

GeometryChanged

 method 74

Listing 2-24

HighlightChanged

 method 75

Listing 2-25

FacetAdded

 method 75

Listing 2-26

FacetRemoved

 method 76

Listing 2-27

HandleEvent

 method 79

Listing 2-28

HandleMouseEvent

 method 82

Listing 2-29

HandleMenuEvent

 method 84

Listing 2-30

AdjustMenus

 method 86

Listing 2-31

DoDialogBox

 method 88

Listing 2-32

BeginRelinquishFocus

 method 91

Listing 2-33

CommitRelinquishFocus

 method 92

Listing 2-34

FocusLost

 method 92

Listing 2-35

AbortRelinquishFocus

 method 93

This document was created with FrameMaker 4.0.4

CookbookBook : CookbookLOF Page 9 Thursday, December 7, 1995 4:59 PM

10

Listing 2-36

FocusAcquired

 method 94

Listing 2-37

PartActivated

 method 94

Listing 2-38

ActivateFrame

 method 95

Listing 2-39

WindowActivating

 method 96

Listing 2-40

Externalize

 method 99

Listing 2-41

CheckAndAddProperties

 method 100

Listing 2-42

CleanseContentProperty

 method 101

Listing 2-43

ExternalizeStateInfo

 method 103

Listing 2-44

CloneInto

 method 105

Listing 2-45

InternalizeStateInfo

 method 106

Listing 2-46

ReadPartInfo

,

CFrameInfo

 constructor, and

CFrameInfo::InitFromStorage

 methods 108

Listing 2-47

WritePartInfo

,

CFrameInfo::Externalize

, and

CFrameInfo::ExternalizeFrameInfo

 methods 110

Listing 2-48

ClonePartInfo

 and

CFrameInfo::CloneInto

 methods 112

Listing 2-49

The

Release

 method 113

Listing 2-50

The

ReleaseAll

 method 115

Listing 2-51

Purge

 method 116

Listing 2-52

SetDirty

 method 117

Listing 2-53

SamplePart types and constant definitions includes 118

Listing 2-54

SamplePart constant definitions 119

Listing 2-55

SamplePart OLE interoperability resource 122
Listing 2-56 SamplePart version number definitions 125
Listing 2-57 SamplePart finder version resources 127
Listing 2-58 SamplePart code fragment resource 128
Listing 2-59 Kind-to-category mapping 130
Listing 2-60 Editor-to-kind mapping 131
Listing 2-61 Editor-to-string mapping 131
Listing 2-62 Kind-to-string mapping 132
Listing 2-63 Category-to-string mapping 133
Listing 2-64 Kind–to–Mac-OS-type mapping 134

Appendix B System Object Model

Listing B-1 Interface statement 196
Listing B-2 Implementation section 196
Listing B-3 Last section of the som_SamplePart class definition 197
Listing B-4 releaseorder statement 198
Listing B-5 Class source define directive 198
Listing B-6 Typical SOM function prototype 199
Listing B-7 Stub method default statements 200

CookbookBook : CookbookLOF Page 10 Thursday, December 7, 1995 4:59 PM

11

P R E F A C E

About This Book

This book, the OpenDoc Cookbook for the Mac OS, presents tutorial information
that explains how to create an OpenDoc part editor.

To understand this book thoroughly, you should also read the OpenDoc
Programmer’s Guide for the Mac OS and the OpenDoc Class Reference for the
Mac OS. The Programmer’s Guide provides an architectural overview,
synthesizes design concepts, and gives specific programming
recommendations. The Class Reference provides complete reference information
about the classes, methods, types, constants, and exceptions defined by
OpenDoc.

Who Should Read This Book 0

This book is written for software developers who wish to write OpenDoc part
editors for the Mac OS platform. It consists primarily of code samples with
prose explanations presenting background information, explication of details,
and cross-references. This book presents a starting point for part developers: its
code base, SamplePart, is a non-embedding part editor that implements a
complete but minimum set of features.

This book covers the basic protocols common to all part editors. It does not
cover advanced features, including embedding, data interchange (through drag
and drop and linking), and scripting. It does, however, describe other code
samples that illustrate some of these features.

The code samples appearing in this book are distributed as text files on a
CD-ROM disk included with the OpenDoc Programmer’s Guide for the Mac OS.

Structure of This Book 0

Following this preface, this book includes a brief chapter describing the
MPW-based development environment as configured to compile the OpenDoc

12

P R E F A C E

code samples. The next chapter is a tutorial presentation of SamplePart, a
sample part editor developed by the OpenDoc engineering team for the
Mac OS. The SamplePart tutorial is the largest portion of the book. The next
chapter contains descriptions of other code samples included with OpenDoc
for the Mac OS, relating those samples to certain concepts of OpenDoc not
covered in the SamplePart tutorial. Last, this book presents two appendixes:
one describes a set of utility classes, functions, and macros which, although
unsupported, are included with OpenDoc for the Mac OS; the other appendix
presents an introduction to the System Object Model

 (SOM

) technology on
which OpenDoc is built, described in terms of the SOM interface of SamplePart.

Most of the methods described in this book include an introductory paragraph
or two, followed by a step-by-step presentation of the method’s algorithm,
followed by a listing of the implementation source code. Some descriptions,
especially those for brief or obvious methods, omit the step-by-step
presentation.

Typographic Conventions 0

This book uses various conventions to present certain types of information.

Special Font 0

All code listings, reserved words, and the names of data structures, classes
constants, fields, parameters, methods, and functions are shown in Letter
Gothic (

this is Letter Gothic

).

Types of Notes 0

There are two types of notes used in this book, which are formatted like the
following two paragraphs.

Note

A note formatted like this contains information that is
interesting but possibly not essential to an understanding
of the main text.

◆

CookbookBook : Preface Page 12 Thursday, December 7, 1995 4:59 PM

13

P R E F A C E

IMPORTANT

A note like this contains information that is especially
important.

▲

Coding Conventions 0

Following are some conventions that apply to the code samples in this book.

Identifier Names 0

The listings that appear in this book embody certain naming conventions
designed to indicate the type and usage of identifiers. These conventions and
examples of each are as follows:

OpenDoc classes begin with

OD ODFrame

Locally defined classes begin with

C CFocus

Virtual base classes begin with

V VMyVirtualClass

Members begin with

f fDisplayFrames

Constants begin with

k kODSmallIconSize

Functions begin with a capital

LoadIcons

Getter and setter methods
begin with

Set

,

Get

, or

Is GetViewType

Static variables begin with

g gMenuBar

Static data members begin with

fg

fgGlobalVar

(includes class globals)

Enumeration types begin with

E EColorType

Class Definitions 0

Class definitions appearing in header files contain only the data members and
method declarations; they contain no implementation. Inline methods for
getters and setters, however, appear in the header file.

CookbookBook : Preface Page 13 Thursday, December 7, 1995 4:59 PM

14

P R E F A C E

Developer Products and Support 0

The organizations described in this section are sources of useful tools and
information for OpenDoc part developers.

APDA 0

APDA is Apple Computer’s worldwide source for hundreds of development
tools, technical resources, training products, and information for anyone
interested in developing applications for Apple Computer platforms.
Customers receive the

Apple Developer Tools Catalog

featuring all current
versions of Apple development tools and the most popular third-party
development tools. APDA offers convenient payment and shipping options,
including site licensing.

To order products or to request a complimentary copy of the

Apple Developer
Tools Catalog

, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

CookbookBook : Preface Page 14 Thursday, December 7, 1995 4:59 PM

15

P R E F A C E

CI Labs 0

OpenDoc is presented and maintained through an organization devoted to
promoting cross-platform standards, architectures, and protocols in a
vendor-independent fashion. This organization, Component Integration
Laboratories (CI Labs), is composed of a number of platform and application
vendors with a common interest in solving OpenDoc issues and promoting
interoperability.

CI Labs supports several levels of participation through different membership
categories. If you are interested in shaping the future direction of component
software, or if you simply need to be kept abreast of the latest developments,
you can become a member. For an information packet, send your mailing
address to

Component Integration Laboratories
PO Box 61747
Sunnyvale, CA 94088-1747
Telephone 408-864-0300
Fax 408-864-0380
Internet cilabs@cilabs.org

CookbookBook : Preface Page 15 Thursday, December 7, 1995 4:59 PM

CookbookBook : Preface Page 16 Thursday, December 7, 1995 4:59 PM

C H A P T E R 1

Contents

17

Contents

1

Figure 1-0
Listing 1-0
Table 1-0

1 Development Environment

Setting Up 19
OpenDoc Build Support 19

Building SamplePart 20
Using the Build Script 20
Examples 21
Setting OpenDoc Flags 22
Using Precompiled Headers 23

Installing OpenDoc 23
Installer 23
Editors Folders 23
Resource Cache 23
Aliases 24
Apple Guide Help Files 24
The Stationery Folder 24

Installing and Running Part Editors 25
Installing Part Editors 25
Creating Stationery 25
Creating Documents 25
Running Parts 26

This document was created with FrameMaker 4.0.4

CookbookBook : DevelopEnvTOC Page 17 Thursday, December 7, 1995 4:59 PM

CookbookBook : DevelopEnvTOC Page 18 Thursday, December 7, 1995 4:59 PM

C H A P T E R 1

Setting Up

19

D
evelopm

ent E
nvironm

ent

1

Development Environment 1

This chapter describes the OpenDoc development environment used in this
book. The OpenDoc development release ships with build support for
Macintosh Programmer’s Workshop (MPW). The following sections describe
how to set up and use MPW to compile SamplePart.

Setting Up 1

These instructions assume that you have installed MPW Pro 19 (or a later
version) with System Object Model

 (SOM

) headers and libraries in their
proper locations. MPW is available on both the E.T.O. (Essentials, Tools, and
Objects) and MPW Pro CD series from APDA. Refer to the preface of this book
for information about APDA.

Documentation provided with the OpenDoc software development kit gives
specific recommendations about system requirements.

OpenDoc Build Support 1

OpenDoc sample code support for MPW, provided with the sample code,
consists of two items:

■

the UserStartup•OpenDoc file

■

the Build Support folder

Both of these items should be placed at the root level of your MPW folder. The
UserStartup•OpenDoc script sets up pathname variables for the OpenDoc
interfaces and utilities, and it adds the Build Support folder to the MPW
command path. The Build Support folder contains build scripts and makefiles
for the MPW compilers with which you can build OpenDoc parts. The Build
Support folder also contains files that set build variables correctly for the
various compilers.

This document was created with FrameMaker 4.0.4

CookbookBook : DevelopEnv Page 19 Thursday, December 7, 1995 4:59 PM

C H A P T E R 1

Development Environment

20

Building SamplePart

Building SamplePart 1

This section explains how to build an executable SamplePart shared library.

Using the Build Script 1

The Build Support folder includes a build script named

BuildOpenDocPart

. You
execute the build script with two required arguments: the path to the makefile
you wish to use, and a list of the compilers you want to run, in order, in a
comma-separated list. You can also specify certain options. The build script
command syntax appears as follows:

BuildOpenDocPart -f

makefile

 -b

compiler(s)

 [

options

]

makefile

 is an MPW pathname, absolute or relative to the current directory.

compiler(s)

 is a list of one or more compilers, specified by their MPW tool
filenames. The compilers you can use to build OpenDoc parts are specified as
follows:

Idl

To generate .xh, .xih, and .cpp files

Rez

To generate .rsrc files

SCpp

To build part with SCpp compiler

SC

To build part with SC compiler

MrCpp

To build part with MrCpp compiler

MrC

To build part with MrC compiler

options

 if any, can be one or more of the following:

-fat

Merge the 68K and PowerPC shared libraries

-k

Rebuild all source files

-nopch

Don’t compile code using precompiled headers

-toco

option

Temporarily override current setting of compiler option,
where

option

 is the option to be overridden, with the setting

CookbookBook : DevelopEnv Page 20 Thursday, December 7, 1995 4:59 PM

C H A P T E R 1

Development Environment

Building SamplePart

21

D
evelopm

ent E
nvironm

ent

1

to use for this compile, specified between straight double
quotation marks. For example,

-toco "-d OptimizationOption=speed"

Examples 1

This section shows some example invocations of the

BuildOpenDocPart

 script.

The following command line performs a Rez build as needed. That is, the Rez
resource compiler is invoked to process newly changed source files according
to the dependency rules in the SamplePart.make makefile:

BuildOpenDocPart -b rez

∂

-f '8100:OpenDoc:SampleCode:SamplePart:SamplePart.make'

(The character

∂

 is the MPW script language continuation symbol; it causes the
MPW Shell to execute the two example lines as one.)

The following command line performs a full Interface Definition Language
(IDL) build, then a full Rez build, then a full SCpp build:

BuildOpenDocPart -b idl,rez,scpp -k

∂

-f '8100:OpenDoc:SampleCode:SamplePart:SamplePart.make'

The following command line performs an SCpp build, as needed, then
performs a MrCpp build, as needed, then creates a fat binary.

BuildOpenDocPart -b scpp,mrcpp -fat

∂

-f '8100:OpenDoc:SampleCode:SamplePart:SamplePart.make'

The

-fat

 option used in the preceding example merges 68K and PowerPC
shared libraries into a fat binary file that will run in native mode on either 68K
or PowerPC systems. This option does not drive the build itself but requires the
targets to be previously built, as they are in this example, as specified by the

-b

argument.

CookbookBook : DevelopEnv Page 21 Thursday, December 7, 1995 4:59 PM

C H A P T E R 1

Development Environment

22

Building SamplePart

Setting OpenDoc Flags 1

Building OpenDoc parts requires setting certain flags, compiler symbols that
must be defined as specified in the file CompDefs.h. The following definition
removes SOM-related debug statements from generated code:

#define _RETAIL

The

_RETAIL

 setting in CompDefs.h controls the definition of the

ODDebug

symbol, required by the Exception Handling (Except) and Debugging
(ODDebug) utilities. The

_RETAIL

 setting also controls traceback symbol
generation for the PowerPC version of Macsbug. The following logic controls
these settings:

#ifdef _RETAIL
#ifndef ODDebug
#define ODDebug 0
#endif

#else
#ifndef ODDebug
#define ODDebug 1
#endif
#pragma traceback on

#endif

The following definitions indicate that the source code does not use obsolete
Mac OS routine names and data structures:

#define OLDROUTINENAMES 0
#define OLDROUTINELOCATIONS 0

The following definition enables the compiler to include in certain header files
only structures useful to the Mac OS platform:

#define _PLATFORM_MACINTOSH_ 1

The following definition specifies the endian format of the Mac OS platform for
the Standard Type I/O (StdTypIO) utility:

#define _PLATFORM_BIG_ENDIAN_ 1

CookbookBook : DevelopEnv Page 22 Thursday, December 7, 1995 4:59 PM

C H A P T E R 1

Development Environment

Installing OpenDoc

23

D
evelopm

ent E
nvironm

ent

1

Using Precompiled Headers 1

Using precompiled headers can significantly shorten compile time when there
have been no changes to included files. The Build Support folder contains two
header files from which a precompiled header can be generated: the file
SCPCHeaders++.pch (for C++ compilers) and the file SCPCHeaders.pch (for
the C compilers). These files include OpenDoc headers, OpenDoc utilities, and
Mac OS Toolbox headers required to build SamplePart and the other OpenDoc
official samples.

Installing OpenDoc 1

This section describes installation of OpenDoc on the Mac OS.

Installer 1

OpenDoc ships with an installer script and installer application to simplify the
installation procedure. You need only drag the installer script onto the installer
application for it to put all of OpenDoc’s components in their correct locations
on your hard disk.

Editors Folders 1

The OpenDoc installer application creates several folders when OpenDoc is
being installed. You should put part editor and part viewer shared library files
into the Editors folder, which the installer puts into the System folder. Editors
folders may also be located at the root of any mounted volume. This allows
you to install part editors on a volume other that the startup volume. It also
allows editors to reside on shared volumes or even on floppy disks. OpenDoc
also scans subfolders in any of these recognized Editors folders for editors.

Resource Cache 1

To speed up launching, OpenDoc stores the name-mapping (

'nmap'

) resources
of all editors in an Editors folder in a single cache file. The cache file is invisible
and is located in the Editors folder. The cache is invalidated and regenerated
when the modification date of any folder that contains editors changes. When

CookbookBook : DevelopEnv Page 23 Thursday, December 7, 1995 4:59 PM

C H A P T E R 1

Development Environment

24

Installing OpenDoc

this happens OpenDoc displays a small dialog box reading

Updating OpenDoc
editors database

.

Use of this cache has no effect on users, but it shaves several seconds from
document launch times. While you are developing part editors, however, you
must realize that simply modifying an editor library in the Editors folder (for
example, editing its

'nmap'

 resources or recompiling the editor or its resources)
does not cause OpenDoc to rescan the editor and load the new

'nmap'

 resource
because modifying a file in a directory does not change the directory’s
modification date. To ensure that OpenDoc reads the changed

'nmap'

 resource,
move the editor out of the directory and back in.

Aliases 1

Aliases to files and folders are permitted in the Editors folder. However, aliases
to files or folders on other volumes are not permitted. In fact, OpenDoc moves
these illegal aliases to the trash. Such aliases should be put in the Editors folder
on the aliases’ destination volume. All editors logically contained in a single
Editors folder must be on a single volume.

Apple Guide Help Files 1

Providing Apple Guide support for an editor requires implementing a help file
to be installed along with the editor shared library file. Apple Guide help files
must be installed in the same folder as the editor itself. In addition, the editor
shared library must include an

'nmap'

 resource that specifies the name of the
help file, linking it to the class identifier of the part editor.

The Stationery Folder 1

The Stationery folder is created by the OpenDoc installer at the root level of the
startup volume. When you create stationery (by dropping an editor shared
library on the OpenDoc application) OpenDoc places the stationery file in the
Stationery folder.

CookbookBook : DevelopEnv Page 24 Thursday, December 7, 1995 4:59 PM

C H A P T E R 1

Development Environment

Installing and Running Part Editors

25

D
evelopm

ent E
nvironm

ent

1

Installing and Running Part Editors 1

This section explains how to install and run OpenDoc part editors.

Installing Part Editors 1

The result of building your part (that is, compiling your source code and
linking it with the OpenDoc and Mac OS system libraries) is a shared library
file. You should place this file in the Editors folder as described in the previous
section.

Creating Stationery 1

You create stationery for your part editor by dropping the shared library file
resulting from your build process on the OpenDoc application. The OpenDoc
installer places the OpenDoc application in a folder named OpenDoc Libraries,
which is inside the Extensions folder in the Mac OS System folder. OpenDoc
places the stationery file in the Stationery folder at the root level of the startup
volume.

Creating Documents 1

On the Mac OS platform, users create documents in three ways: by launching a
part editor’s stationery file from the Finder (double-clicking or selecting and
opening), by choosing the New command from the Document menu when an
OpenDoc document is running (the new document is the same kind as the root
part of the frontmost window), or by dragging a selected content object or
embedded part to the desktop in the Finder (the new document has the
dragged part or content as its root part).

The new document is created in the same folder as the previous document or, if
that is not possible, on the desktop. The new document is named by the
category of the root part or the name of the stationery from which it is created.
If more than one document by this name would exist, the new document name
has an integer appended indicating its place.

CookbookBook : DevelopEnv Page 25 Thursday, December 7, 1995 4:59 PM

C H A P T E R 1

Development Environment

26

Installing and Running Part Editors

Running Parts 1

Mac OS users launch documents by double-clicking them or selecting and
opening them in the Finder. OpenDoc locates and launches each part editor
required to display and manipulate the root part of the document and each
part, if any, embedded within it.

CookbookBook : DevelopEnv Page 26 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

Contents

27

Contents

2

Figure 2-0
Listing 2-0
Table 2-0

2 SamplePart Tutorial

Features of SamplePart 31
SamplePart Structure 31

SamplePart System Object Model Interface 32
Calling Inherited Methods 32
SOM Wrapper Class and Part Wrapper Object 32

SamplePart File Structure 33
SamplePart Class Definition 33
Shared Global Variables 37
Initialization 39

The Constructor 40
The InitPart Method 40
The InitPartFromStorage Method 42
The Initialize Method 44

Opening the Part Into a Window 46
The Open Method 47
The CreateWindow Method 50

Handling Frame Layout 53
The DisplayFrameAdded Method 53
The DisplayFrameConnected Method 55
The DisplayFrameRemoved Method 57
The DisplayFrameClosed Method 59
The AttachSourceFrame Method 60
The FrameShapeChanged Method 61

Drawing the Part 62
The Draw Method 63
The DrawIconView Method 64
The DrawThumbnailView Method 66

This document was created with FrameMaker 4.0.4

CookbookBook : SamplePartTOC Page 27 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

28

Contents

The DrawFrameView Method 67
The ViewTypeChanged Method 70
The GeometryChanged Method 74
The HighlightChanged Method 74
The FacetAdded Method 75
The FacetRemoved Method 76

Handling Events 77
Event Constants 77
The HandleEvent Method 78
The HandleMouseEvent Method 80
The HandleMenuEvent Method 83
The AdjustMenus Method 85
The DoDialogBox Method 87
The View As Window Command 90

Activation 90
The BeginRelinquishFocus Method 90
The CommitRelinquishFocus Method 91
The FocusLost Method 92
The AbortRelinquishFocus Method 93
The FocusAcquired Method 93
The PartActivated Method 94
The ActivateFrame Method 95
The WindowActivating Method 96

Persistent Storage 97
The Externalize Method 98
The CheckAndAddProperties Method 99
The CleanseContentProperty Method 101
The ExternalizeStateInfo Method 102
The ExternalizeContent Method 104
The CloneInto Method 104
The InternalizeContent Method 105
The InternalizeStateInfo Method 106
The ReadPartInfo Method 107
The WritePartInfo Method 110
The ClonePartInfo Method 112
The Release Method 113
The ReleaseAll Method 114
The Purge Method 115

CookbookBook : SamplePartTOC Page 28 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

Contents

29

S
am

pleP
art Tutorial

2

The SetDirty Method 117
Defining Types and Constants 118
Defining Resources 122

OpenDoc-OLE Interoperability 122
Menu IDs 123
Bundle Resources 123
Version Numbers 124
Code Fragment Resources 127
Name-Mapping Resources 129

Mapping Kind to Category 129
Mapping Editor to Kind 130
Mapping ISO Strings to User-Readable Names 131
Mapping Kind to Mac OS Type 133

CookbookBook : SamplePartTOC Page 29 Thursday, December 7, 1995 4:59 PM

CookbookBook : SamplePartTOC Page 30 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

Features of SamplePart

31

S
am

pleP
art Tutorial

2

SamplePart Tutorial 2

This chapter presents a tutorial that shows how to implement SamplePart, a
part editor with the basic feature set common to all OpenDoc part editors.

Features of SamplePart 2

SamplePart implements a complete but minimum set of features. Although it’s
possible to write an executable part editor with even fewer features, it would
not be very useful.

From the user’s point of view, SamplePart’s primary capability is simply to
display a text string. It can also display itself in small icon, large icon, and
thumbnail views. SamplePart also supports the Save command and, when
embedded in a container part, the View as Window command.

In order to support its feature set and interact properly with other parts,
SamplePart performs the following tasks, which are described in this chapter:

■

initialization

■

opening the part into a window

■

handling part layout

■

drawing the part’s content

■

handling basic events

■

activation

■

writing the part to persistent storage

In addition, this chapter shows how to set up your part editor’s resources so
that OpenDoc can match it with its parts.

SamplePart Structure 2

SamplePart is implemented primarily in a single C++ class, which is described
in this chapter. It also uses a set of its own utility functions, collection classes,
and various utilities provided with the Mac OS implementation of OpenDoc.

This document was created with FrameMaker 4.0.4

CookbookBook : SamplePart Page 31 Thursday, December 7, 1995 4:59 PM

CHAPTER 2

SamplePart Tutorial

32 SamplePart Structure

SamplePart System Object Model Interface 2

The System Object Model (SOM) is a standard object infrastructure upon which
the OpenDoc component software architecture is built. All OpenDoc part
editors are represented to OpenDoc by a subclass of ODPart, which is a SOM
class. The interface to a SOM class is written in the SOM Interface Definition
Language (IDL) and adheres to certain protocols specific to SOM.

SamplePart incorporates a scheme by which the part’s SOM interface is largely
hidden from the programmer. SamplePart has only one SOM class, which is a
subclass of ODPart, referred to as the SOM wrapper class. This SOM class
overrides all ODPart methods, although SamplePart implements only some of
them. For those methods that SamplePart implements, the SOM wrapper class
methods delegate the implementation to a C++ class that provides the
capabilities of SamplePart.

The SOM wrapper class is named som_SamplePart, and it is defined in IDL. The
SOM class methods merely call corresponding methods in the C++ class, which
is named SamplePart. For ODPart methods that the SamplePart class does not
implement, the SOM class override method bodies are empty. They are
provided so that you can extend SamplePart simply by adding a call to a
method in a C++ class—you do not need to use the SOM compiler or revise the
SOM class IDL interfaces.

Generally, you can use SamplePart’s SOM interface as provided in the sample
code base—you don’t need to understand SOM in order to understand
SamplePart. For an introduction to IDL that describes SOM artifacts found in
the definition of the som_SamplePart class, refer to Appendix B.

Calling Inherited Methods 2

For ODPart override methods that require calling the parent class
implementation, the call is made in the SOM class implementation. To know
whether you need to call the parent class, see the code for the som_SamplePart
wrapper class (in which the inherited method calls are made) and the OpenDoc
Class Reference (which explains for each method how its inherited method
should be called).

SOM Wrapper Class and Part Wrapper Object 2

The SOM wrapper class is not the part wrapper object described in the
OpenDoc Programmer’s Guide for the Mac OS. The part wrapper object is a
private object that OpenDoc instantiates and uses to represent the part editor.

C H A P T E R 2

SamplePart Tutorial

SamplePart Class Definition

33

S
am

pleP
art Tutorial

2

OpenDoc passes a reference to the part wrapper object to the part editor in its

InitPart

 or

InitPartFromStorage

 method, as described in “The InitPart
Method” on page 40.

SamplePart File Structure 2

The primary source files composing the SamplePart program are the following:

SamplePart.h

SamplePart

 class definition
SamplePart.cpp

SamplePart

 method implementations
SamplePartDef.h Constant definitions
SamplePartUtils.h Utility class definitions
SamplePartUtils.cpp Utility method implementations
SamplePartGlobals.h Global variables structure definition
SamplePartGlobals.cpp External global variables initialization
SamplePartVers.h Version definitions
SampleCollections.h Collection class definitions
SampleCollections.cpp Collection method implementations
SamplePart.r Resource definitions
SamplePartOtherResources.rsrc Other resources used by SamplePart
CompDefs.h Defines for compiling SamplePart

The source files for SamplePart’s SOM interface are the following:

som_SamplePart.idl SOM wrapper class definition
som_SamplePart.xh SOM-emitted public headers
som_SamplePart.xih SOM-emitted private headers
som_SamplePart.cpp SOM wrapper method implementations
som_SamplePartInit.cpp CFM initialization function
som_SamplePart.exp SOM-emitted class export symbols

SamplePart Class Definition 2

Most of the SamplePart implementation is contained within a single C++ class
called

SamplePart

. The public methods declared in this class correspond exactly
to methods of the same name in

som_SamplePart

, all of which override methods
of

ODPart

. The protected methods are subroutines internal to SamplePart called
in the implementation of the public methods. The private members of

SamplePart

 are its data members.

CookbookBook : SamplePart Page 33 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

34

SamplePart Class Definition

Listing 2-1 shows the complete class definition of

SamplePart

.

Listing 2-1

SamplePart

 class definition

class SamplePart {

 public:

 SamplePart();
 virtual ~SamplePart();

 // -- Initialization --
 void InitPart(Environment* ev, ODStorageUnit* storageUnit,
 ODPart* partWrapper);
 void InitPartFromStorage(Environment* ev, ODStorageUnit* storageUnit,
 ODPart* partWrapper);

 // -- Storage --
 void Release(Environment* ev);
 void ReleaseAll(Environment* ev);
 ODSize Purge(Environment* ev, ODSize size);
 void Externalize(Environment* ev);
 void ExternalizeKinds(Environment* ev, ODTypeList* kindset);
 void ChangeKind(Environment* ev, ODType kind);
 void CloneInto(Environment* ev, ODDraftKey key,
 ODStorageUnit* destinationSU,
 ODFrame* initiatingFrame);
 void WritePartInfo(Environment* ev, ODInfoType partInfo,
 ODStorageUnitView* storageUnitView);
 ODInfoType ReadPartInfo(Environment* ev, ODFrame* frame,
 ODStorageUnitView* storageUnitView);
 void ClonePartInfo(Environment *ev, ODDraftKey key, ODInfoType partInfo,
 ODStorageUnitView* storageUnitView,
 ODFrame* scopeFrame);

 // -- Layout --
 void DisplayFrameAdded(Environment* ev, ODFrame* frame);
 void DisplayFrameRemoved(Environment* ev, ODFrame* frame);
 void DisplayFrameClosed(Environment* ev, ODFrame* frame);
 void DisplayFrameConnected(Environment* ev, ODFrame* frame);

CookbookBook : SamplePart Page 34 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

SamplePart Class Definition

35

S
am

pleP
art Tutorial

2

 void AttachSourceFrame(Environment* ev, ODFrame* frame,
 ODFrame* sourceFrame);
 void ViewTypeChanged(Environment* ev, ODFrame* frame);
 void FrameShapeChanged(Environment* ev, ODFrame* frame);
 ODID Open(Environment* ev, ODFrame* frame);

 // -- Imaging --
 void Draw(Environment* ev, ODFacet* facet, ODShape* invalidShape);
 void GeometryChanged(Environment* ev, ODFacet* facet,
 ODBoolean clipShapeChanged,
 ODBoolean externalTransformChanged);
 void HighlightChanged(Environment* ev, ODFacet* facet);
 void FacetAdded(Environment* ev, ODFacet* facet);
 void FacetRemoved(Environment* ev, ODFacet* facet);

 // -- Activation --
 ODBoolean BeginRelinquishFocus(Environment* ev, ODTypeToken focus,
 ODFrame* ownerFrame,
 ODFrame* proposedFrame);
 void CommitRelinquishFocus(Environment* ev, ODTypeToken focus,
 ODFrame* ownerFrame,
 ODFrame* proposedFrame);
 void AbortRelinquishFocus(Environment* ev, ODTypeToken focus,
 ODFrame* ownerFrame,
 ODFrame* proposedFrame);
 void FocusAcquired(Environment* ev,ODTypeToken focus,
 ODFrame* ownerFrame);
 void FocusLost(Environment* ev,ODTypeToken focus,
 ODFrame* ownerFrame);

 // -- Event handling --
 ODBoolean HandleEvent(Environment* ev, ODEventData* event,
 ODFrame* frame, ODFacet* facet,
 ODEventInfo* eventInfo);
 void AdjustMenus(Environment* ev, ODFrame* frame);

 protected:

 // -- Initialization --
 void Initialize(Environment* ev);

CookbookBook : SamplePart Page 35 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

36

SamplePart Class Definition

 // -- Storage --
 void CheckAndAddProperties(Environment* ev,
 ODStorageUnit* storageUnit);
 void CleanseContentProperty(Environment* ev,
 ODStorageUnit* storageUnit);
 void InternalizeStateInfo(Environment* ev,
 ODStorageUnit* storageUnit);
 void InternalizeContent(Environment* ev,
 ODStorageUnit* storageUnit);
 void ExternalizeStateInfo(Environment* ev,
 ODStorageUnit* storageUnit,
 ODDraftKey key, ODFrame* scopeFrame);
 void ExternalizeContent(Environment* ev, ODStorageUnit* storageUnit,
 ODDraftKey key, ODFrame* scopeFrame);
 void SetDirty(Environment* ev);

 // -- Event Handling --
 ODBoolean HandleMenuEvent(Environment* ev, ODEventData* event,
 ODFrame* frame);
 ODBoolean HandleMouseEvent(Environment* ev, ODEventData* event,
 ODFacet* facet, ODEventInfo* eventInfo);
 void DoMouseEvent(Environment* ev, ODFacet* facet, Point* where);
 void DoDialogBox(Environment* ev, ODFrame* frame,
 ODSShort dialogID, ODUShort errorNumber = 0);

 // -- Imaging --
 void DrawFrameView(Environment* ev, ODFacet* facet);
 void DrawIconView(Environment* ev, ODFacet* facet);
 void DrawThumbnailView(Environment* ev, ODFacet* facet);
 void GenerateThumbnail(Environment* ev, ODFrame* frame);

 // -- Activation --
 void PartActivated(Environment* ev, ODFrame* frame);
 ODBoolean ActivateFrame(Environment* ev, ODFrame* frame);
 void WindowActivating(Environment* ev, ODFrame* frame,
 ODBoolean activating);
 void RelinquishAllFoci(Environment* ev, ODFrame* frame);

 // -- Layout --
 ODWindow* AcquireFramesWindow(Environment* ev, ODFrame* frame);
 ODWindow* CreateWindow(Environment* ev, ODFrame* frame, ODType frameType,

CookbookBook : SamplePart Page 36 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Shared Global Variables

37

S
am

pleP
art Tutorial

2

 WindowProperties* windowProperties);
 void CleanupWindow(Environment* ev, ODFrame* frame);
 WindowProperties* GetDefaultWindowProperties(Environment* ev, ODFrame* frame,
 Rect* windowRect);
 WindowProperties* GetSavedWindowProperties(Environment* ev, ODFrame* frame);
 Rect CalcPartWindowSize(Environment* ev, ODFrame* sourceFrame);
 Rect CalcPartWindowPosition(Environment* ev, ODFrame* frame,
 Rect* partWindowBounds);
 ODFacet* GetActiveFacetForFrame(Environment* ev, ODFrame* frame);
 ODShape* CalcNewUsedShape(Environment* ev, ODFrame* frame);
 void UpdateFrame(Environment* ev, ODFrame* frame, ODTypeToken view,
 ODShape* usedShape);
 void CleanupDisplayFrame(Environment* ev, ODFrame* frame,
 ODBoolean frameRemoved);

 private:

 CList* fDisplayFrames;
 ODBoolean fDirty;
 ODPart* fSelf;
 ODBoolean fReadOnlyStorage;
};

Shared Global Variables 2

In addition to the method and instance variables declared in Listing 2-1,
SamplePart uses a set of global variables, declared as members of a C++
structure. These variables are shared among all the currently running instances
of the

SamplePart

 object in a single document. In addition, SamplePart
maintains two separate global variables to provide access the shared globals: a
pointer to the global variables structure, and a count of the number of instances
of the

SamplePart

 class currently using the global variables.

The global variables are defined and initialized in the files SamplePartGlobals.h
and SamplePartGlobals.cpp. The global variables structure is allocated in
temporary memory by the

Initialize

 method (see Listing 2-6 on page 45).

The global variables structure definition is shown in Listing 2-2.

CookbookBook : SamplePart Page 37 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

38

Shared Global Variables

Listing 2-2

SamplePart global variables

struct SamplePartGlobals; // forward

extern ODUShort gGlobalsUsageCount;
extern SamplePartGlobals* gGlobals;

struct SamplePartGlobals {
public:
SamplePartGlobals();
~SamplePartGlobals() {}

ODMenuBar* fMenuBar;
ODFocusSet* fUIFocusSet;
Handle fThumbnail;

ODTypeToken fSelectionFocus;
ODTypeToken fMenuFocus;
ODTypeToken fModalFocus;
ODTypeToken fFrameView;
ODTypeToken fLargeIconView;
ODTypeToken fSmallIconView;
ODTypeToken fThumbnailView;
ODTypeToken fMainPresentation;

ODScriptCode fEditorsScript;
ODLangCode fEditorsLanguage;

};

inline SamplePartGlobals::SamplePartGlobals()
{

fMenuBar = kODNULL;
fUIFocusSet = kODNULL;
fThumbnail = kODNULL;

fSelectionFocus = kODNullTypeToken;
fMenuFocus = kODNullTypeToken;
fModalFocus = kODNullTypeToken;
fFrameView = kODNullTypeToken;
fLargeIconView = kODNullTypeToken;

CookbookBook : SamplePart Page 38 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Initialization

39

S
am

pleP
art Tutorial

2

fSmallIconView = kODNullTypeToken;
fThumbnailView = kODNullTypeToken;
fMainPresentation = kODNullTypeToken;

fEditorsScript = 0;
fEditorsLanguage = 0;

}

ODUShort gGlobalsUsageCount = 0;
SamplePartGlobals* gGlobals = kODNULL;

Initialization 2

The first responsibility of a part editor is initialization. When the user launches
a document, either preexisting or newly created from stationery, OpenDoc
instantiates the part object belonging to each currently visible part in the
document. In SamplePart, the part object is an instance of the

som_SamplePart

class, which is a subclass of

ODPart

. At that time, the SOM runtime system calls
the part object’s

somInit

 method.

The

SamplePart

 object’s

somInit

 method, belonging to

som_SamplePart

, does
nothing. The SOM runtime system automatically calls the inherited

somInit

methods, in the manner of a C++ constructor. SOM automatically zeroes the
instance variables of a newly constructed SOM object, so there is no need to do
so in the

somInit

 method.

Next, OpenDoc calls one of the part object’s initialization methods. If the part is
creating stationery, OpenDoc calls the

InitPart

 method of the part object; if the
part was previously created, either as the root part or embedded in a
document, OpenDoc calls the part’s

InitPartFromStorage

 method. In
SamplePart, these methods instantiate the

SamplePart

 C++ class, call their
inherited methods, and call the

SamplePart

 object’s methods of the same name.
When the

SamplePart

 class is instantiated, the C++ runtime system calls its
constructor, which does set instance variables to zero, as shown in Listing 2-3.

In SamplePart, initialization code resides in four methods: the

SamplePart

constructor, the

InitPart

 method, the

InitPartFromStorage

 method, and the
internal

Initialize

 method. The

Initialize

 method contains the code that is
common to both initialization situations: initializing a part when creating

CookbookBook : SamplePart Page 39 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

40

Initialization

stationery (when OpenDoc calls

InitPart) and initializing a part previously
created and written to persistent storage (when OpenDoc calls
InitPartFromStorage). Both of those methods call Initialize. The following
sections discuss the implementation of these methods.

The Constructor 2

In SamplePart, the constructor performs only one action: it sets initial values
for the SamplePart object’s private data fields. You should not do anything in
the constructor that can fail, such as allocating memory. The SOM_Trace macro
call indicates the name of the method currently executing for debugging
purposes.

Listing 2-3 shows the SamplePart object’s constructor.

Listing 2-3 SamplePart constructor

SamplePart::SamplePart()
{
 SOM_Trace("SamplePart","Constructor");

 fDisplayFrames = kODNULL;
 fDirty = kODFalse;
 fSelf = kODNULL;
 fReadOnlyStorage = kODFalse;
}

The InitPart Method 2

If the part is and has no stored data, OpenDoc calls the InitPart method after it
instantiates the part object. Every part must implement this method. You can
do things that might fail in this method, such as allocating extra storage, setting
up your storage unit, and getting resources if you need them.

As with all methods in SamplePart, the implementation is delegated. That is,
OpenDoc calls the InitPart method belonging to the ODPart subclass, which in
turn calls the InitPart method of the SamplePart object, which contains the

CookbookBook : SamplePart Page 40 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Initialization 41

S
am

pleP
art Tutorial

2

method’s implementation. For more information, refer to “SamplePart System
Object Model Interface” on page 32.

The implementation of the InitPart method is contained within an exception
handler, a block of code delimited by the macro calls TRY and ENDTRY. When the
body of the method executes, the statements following the TRY macro execute; if
any of them causes an exception to be thrown, the statements following the
CATCH_ALL macro execute. The RERAISE macro causes the exception to be thrown
again to the caller of InitPart. If no exception is thrown, control passes to the
statement following the ENDTRY macro call (the end of the method body in this
case). For more information about the OpenDoc exception-handling utility, see
Appendix A, “OpenDoc Utilities.”

The SamplePart implementation of the InitPart method performs the following
actions:

1. Initializes the part-wrapper field.

OpenDoc passes a pointer to its internal representation for the part editor, its
part wrapper, when it calls the InitPart method, and the SamplePart object
stores the pointer in its fSelf data member.
OpenDoc uses the part wrapper in place of a pointer to the actual part object
to enable swapping part editors at runtime for part translation. Wherever
OpenDoc requires a reference to the part editor, such as when registering for
idle time, you must pass the part wrapper pointer, rather than passing this
(from the SamplePart C++ object) or somSelf (from the som_SamplePart object).

2. Ensures that the part’s destination storage is writable.

OpenDoc calls the method when a part is first instantiated, so we must be
able to write part status and content information to its storage unit.

3. Calls the common initialization code.

Initialization code common to InitPart and InitPartFromStorage resides in
the internal Initialize method. The Initialize method is described in “The
Initialize Method” on page 44.

4. Sets the dirty flag.

Setting the dirty flag to kODTrue enables SamplePart to write out its state and
content information at the next opportunity.

If any of the called methods throws an exception, the CATCH_ALL method puts
the error code in SOM’s Environment structure. Cleanup occurs in the
SamplePart destructor.

CookbookBook : SamplePart Page 41 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

42 Initialization

Listing 2-4 shows the implementation of the InitPart method.

Listing 2-4 InitPart method

void SamplePart::InitPart(Environment* ev,
 ODStorageUnit* storageUnit,
 ODPart* partWrapper)

{
 SOM_Trace("SamplePart","InitPart");

TRY
fSelf = partWrapper;
fReadOnlyStorage = kODFalse;
this->Initialize(ev);
this->SetDirty(ev);

CATCH_ALL
RERAISE;

ENDTRY
}

The InitPartFromStorage Method 2

If a part has previously been stored persistently, OpenDoc calls the
InitPartFromStorage method, instead of InitPart, after it instantiates the part
object. This situation occurs when a document or stationery is opened or when
the part is embedded and its containing part reads it into memory. So, every
part must also implement this method, which should do many of the same
things as InitPart, but which must also handle reading content and status
information from the storage unit into memory.

The part must not alter its storage unit in this method; if it does so, the
document’s Save menu item becomes enabled without the user having
changed the document.

The SamplePart object’s implementation of the InitPartFromStorage method
performs the following actions:

1. Initializes the part-wrapper field.

The method puts the part-wrapper pointer passed in from OpenDoc into the
private fSelf data member.

CookbookBook : SamplePart Page 42 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Initialization 43

S
am

pleP
art Tutorial

2

2. Determines if the draft from which the part is being opened is read only.

If the draft permissions are read only, the part must not write any data back
to its storage unit. The method sets the part’s private fReadOnlyStorage
Boolean flag accordingly, to be checked before writing data in the
Externalize method.

3. Calls the common initialization code.

Initialization code common to InitPart and InitPartFromStorage resides in
the internal Initialize method. The Initialize method is described in “The
Initialize Method” on page 44.

4. Reads the part’s status information.

Because the part was previously written to its storage unit,
InitPartFromStorage reads in the part’s status information by calling the
internal InternalizeStateInfo method, which is described in “The
InternalizeStateInfo Method” on page 106.

5. Reads the part’s content value from the storage unit.

In SamplePart, the internal method that would read in the part’s content
value, InternalizeContent, does nothing, because SamplePart has no
intrinsic content. A brief discussion of the method appears in “The
InternalizeContent Method” on page 105.

Listing 2-5 shows the implementation of the InitPartFromStorage method.

Listing 2-5 InitPartFromStorage method

void SamplePart::InitPartFromStorage(Environment* ev,
 ODStorageUnit* storageUnit,
 ODPart* partWrapper)

{
 SOM_Trace("SamplePart","InitPartFromStorage");

TRY
fSelf = partWrapper;
fReadOnlyStorage = (ODGetDraft(ev,storageUnit)->

GetPermissions(ev) < kODDPSharedWrite);
this->Initialize(ev);
this->InternalizeStateInfo(ev, storageUnit);
this->InternalizeContent(ev, storageUnit);

CookbookBook : SamplePart Page 43 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

44 Initialization

CATCH_ALL
RERAISE;

ENDTRY
}

The Initialize Method 2

The Initialize method is internal to the SamplePart class. OpenDoc doesn’t
call Initialize; both InitPart and InitPartFromStorage call it. The Initialize
method contains the initialization code that is common to both situations,
whether the part is newly created or is to be read in from persistent storage.

The Initialize method performs the following actions:

1. Creates a frame list collection object.

The frame list collection object (CList) is necessary to keep track of the
multiple display frames in which the part displays its content. The class is
defined in the SamplePart utilities file SampleCollections.h.

2. Checks the usage count of the SamplePart global variables.

If the usage count is not equal to zero, another instance of this part object is
running. In that case, the following initialization steps have already been
done and can be skipped. Otherwise, the method performs the following
steps and sets the global variables usage count to 1.

3. Stores a reference to the OpenDoc session object.

This is a convenience, because the session object provides access to
session-wide global objects and services such as the window-state object and
unique name tokenization. Note that the self-reference passed with the
ODGetSession call is the part-wrapper object passed in by OpenDoc to
InitPart or InitPartFromStorage.

4. Creates the global variables structure.

The global variables structure is described in “Shared Global Variables” on
page 37.

5. Instantiates the part’s menu bar.

The part editor instantiates its menu bar by copying OpenDoc’s
session-wide menu bar, a base menu bar object maintained by the
window-state object. That action maintains consistency in the arrangement

CookbookBook : SamplePart Page 44 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Initialization 45

S
am

pleP
art Tutorial

2

of default menu items. Also, because its menu bar is a copy, this part editor
can add and subtract menus and items without affecting the menu bars of
other parts.
Note that the menu bar object is shared among all the currently running
instances of SamplePart in this document by virtue of its declaration in the
shared global variables structure shown in Listing 2-2 on page 38.

6. Tokenizes and stores values for the foci the part needs.

The tokens are used for equivalence tests in the part activation methods and
for requesting foci from the arbitrator. The method also packages into a set
the three user-interface foci required by the part editor when it is activated,
so it can request them all at once. The tokenized foci values are stored in the
part’s global variables.

7. Tokenizes view types and presentation type.

The method tokenizes the four view types that all part editors must support
and the part editor’s main presentation type. The method tokenizes these
strings for convenience, because tokens are faster to handle than strings.

8. Determines the script and language to which the part is localized.

The GetEditorScriptLanguage utility function is defined in the SamplePart
utilities file SamplePartUtils.cpp.

The final logic of the Initialize method manages SamplePart’s global
variables usage count, which was mentioned in step 2. If the globals usage
count was not equal to zero at that step, then another instance of the part is
already running, and this instance can use the same tokens, focus set, and
menu bar object. In that case, the method merely increments the global
variables usage count.

Listing 2-6 shows the implementation of the Initialize method.

Listing 2-6 Initialize method

void SamplePart::Initialize(Environment* ev)
{
 SOM_Trace("SamplePart","Initialize");

fDisplayFrames = new CList;

if (gGlobalsUsageCount == 0)

CookbookBook : SamplePart Page 45 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

46 Opening the Part Into a Window

{
ODSession* session = ODGetSession(ev,fSelf);
gGlobals = new SamplePartGlobals;
gGlobals->fMenuBar = session->GetWindowState(ev)->CopyBaseMenuBar(ev);

gGlobals->fSelectionFocus = session->Tokenize(ev, kODSelectionFocus);
gGlobals->fMenuFocus = session->Tokenize(ev, kODMenuFocus);
gGlobals->fModalFocus = session->Tokenize(ev, kODModalFocus);

gGlobals->fMainPresentation = session->Tokenize(ev, kMainPresentation);

gGlobals->fFrameView = session->Tokenize(ev, kODViewAsFrame);
gGlobals->fLargeIconView = session->Tokenize(ev, kODViewAsLargeIcon);
gGlobals->fSmallIconView = session->Tokenize(ev, kODViewAsSmallIcon);
gGlobals->fThumbnailView = session->Tokenize(ev, kODViewAsThumbnail);

gGlobals->fUIFocusSet = session->GetArbitrator(ev)->CreateFocusSet(ev);
gGlobals->fUIFocusSet->Add(ev, gGlobals->fMenuFocus);
gGlobals->fUIFocusSet->Add(ev, gGlobals->fSelectionFocus);

GetEditorScriptLanguage(ev, &gGlobals->fEditorsScript,
&gGlobals->fEditorsLanguage);

gGlobalsUsageCount = 1;
}
else
{

gGlobalsUsageCount++;
}

}

After these initialization methods have executed, the SamplePart part editor is
in a consistent state, ready to become active.

Opening the Part Into a Window 2

OpenDoc calls the Open method of a part editor in three cases: when the part is
initially created, when the part is the root part of a document being opened,

CookbookBook : SamplePart Page 46 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Opening the Part Into a Window 47

S
am

pleP
art Tutorial

2

and when the part is embedded and the user opens it into a separate part
window.

If the frame parameter has a value of kODNULL, then the part is being created for
the first time. If the frame parameter points to a root frame, then an existing
document is being opened. If the frame parameter points to a frame that is not a
root frame, then an embedded frame is being opened into a part window.

The basic steps in the process of opening the part into a window are as follows:

1. If a frame pointer was passed into the Open call, check for an existing part
window. If there is one, skip to step 4.

2. If no frame pointer was passed or the part window no longer exists, create a
new window (to add the root frame).

3. Open the window (to add the root facet).

4. Show the window (to make it visible).

5. Select the window (to bring it to the front).

6. Return the window ID number.

The order of the sequence—opening, then showing, then selecting the
window—is very important. In SamplePart, these steps are accomplished by
the Open and CreateWindow methods, with some help from utility methods.

The Open Method 2

The SamplePart object’s implementation of the Open method performs the
following actions:

1. Creates pointer variables for a window object and a window properties
structure.

The ODWindow object is a wrapper for a platform-specific window. The
WindowProperties object is a C structure (defined in the file WinUtils.h) to
contain the attributes of a Mac OS–specific window, such as bounding
rectangle, title string, and so forth.
The method uses the macro ODVolatile, which is defined in the OpenDoc
exception-handling utility file Except.h. This macro ensures that the variable
will remain valid in the CATCH_ALL block after having been modified in the
TRY block. The ODVolatile macro is documented in Appendix A, in the
section “Make Variables That You Modify Volatile” on page 152.

CookbookBook : SamplePart Page 47 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

48 Opening the Part Into a Window

2. Handles the new document case.

If the frame parameter is null, the part must create a window for a new
document. In this case, there are no saved window properties, so the method
calls the SamplePart internal method GetDefaultWindowProperties to create a
default set.
Having filled in the window properties structure, the method then calls the
SamplePart internal method CreateWindow to create the platform window and
OpenDoc window wrapper. The CreateWindow method is described in “The
CreateWindow Method” on page 50.

3. Handles the existing document case.

If the frame parameter points to a root frame, the part must create a window
to display the root frame of an existing document. In this case, the window
properties were previously saved in a separate storage unit, to which a
strong reference exists in the root frame’s storage unit. The SamplePart
internal method GetSavedWindowProperties retrieves the information using
the BeginGetWindowProperties utility method defined in the file WinUtils.cpp.
Having obtained the window properties, the method calls the SamplePart
internal method CreateWindow. In this block, the method also uses the
ODReleaseObject utility method to decrement the reference count of the
frame object because it was incremented in GetSavedWindowProperties.

4. Handles the embedded frame case.

If the frame parameter is not null, and it’s not a root frame, then it’s an
embedded frame being opened into a part window. In this case, the method
first tries to retrieve an existing window for the frame using the SamplePart
internal method AcquireFramesWindow. A window can exist for the frame if it
was previously opened into a part window.
Otherwise, the method proceeds as in the new document case, except that it
uses the frame to determine window size and property values. Finally, the
method saves the part-window pointer in the frame’s CFrameInfo object.

5. Calls the window activation methods.

When it has created the window, the Open method calls three methods
belonging to the OpenDoc window-wrapper object: Open, Show, and Select.
The window’s Open method creates the root facet for the window and
notifies the part editor. The Show method makes the window visible. The
Select method activates and selects the new window, bringing it to the front.

6. Cleans up and returns the window’s ID number to OpenDoc.

CookbookBook : SamplePart Page 48 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Opening the Part Into a Window 49

S
am

pleP
art Tutorial

2

Listing 2-7 shows the implementation of the Open method.

Listing 2-7 Open method

ODID SamplePart::Open(Environment*ev, ODFrame* frame)
{
 SOM_Trace("SamplePart","Open");

ODID windowID;
TempODWindow window(kODNULL);

WindowProperties* windowProperties = kODNULL;
ODVolatile(windowProperties);

TRY
if (frame == kODNULL)
{

Rect windowRect = this->CalcPartWindowSize(ev, kODNULL);
windowProperties = this->GetDefaultWindowProperties(ev,

kODNULL, &windowRect);
window = this->CreateWindow(ev, kODNULL, kODFrameObject, windowProperties);

}
else if (frame->IsRoot(ev))
{

windowProperties = this->GetSavedWindowProperties(ev, frame);

if (windowProperties == kODNULL)
{

Rect windowRect = this->CalcPartWindowSize(ev, frame);
windowProperties = this->GetDefaultWindowProperties(ev,

kODNULL, &windowRect);
}

window = this->CreateWindow(ev, frame, kODFrameObject, windowProperties);

ODReleaseObject(ev, windowProperties->sourceFrame);
}
else // frame is a source frame
{

window = this->AcquireFramesWindow(ev, frame);

CookbookBook : SamplePart Page 49 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

50 Opening the Part Into a Window

if (window == kODNULL)
{

Rect windowRect = this->CalcPartWindowSize(ev, frame);
windowProperties = this->GetDefaultWindowProperties(ev,

frame, &windowRect);
// Create a Mac Window and register it with OpenDoc.
window = this->CreateWindow(ev, kODNULL,

kODFrameObject, windowProperties);
CFrameInfo* frameInfo = (CFrameInfo*) frame->GetPartInfo(ev);
frameInfo->SetPartWindow(ev, window);

}
}

window->Open(ev);
window->Show(ev);
window->Select(ev);

ODDeleteObject(windowProperties);
windowID = (window ? window->GetID(ev) : kODNULLID);

CATCH_ALL
if (windowProperties)

ODSafeReleaseObject(windowProperties->sourceFrame);
ODDeleteObject(windowProperties);
windowID = kODNULLID;
RERAISE;

ENDTRY

return windowID;
}

The CreateWindow Method 2

The SamplePart object’s internal CreateWindow method is called by the part’s
Open method to create a window for a frame that is being opened. The method
uses information passed in its windowProperties parameter to set the window
attributes—the size of the new window, the string for its title bar, and so forth.
The method then creates a Mac OS–specific window structure, and integrates
the window into the OpenDoc environment by registering it in an OpenDoc

CookbookBook : SamplePart Page 50 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Opening the Part Into a Window 51

S
am

pleP
art Tutorial

2

window-state object, thereby creating an OpenDoc window pointer which is
returned from the method.

The CreateWindow method performs the following actions:

1. Creates a platform-specific window structure.

The method creates the window structure using the Mac OS toolbox routine
NewCWindow and the OpenDoc memory manager utility. The ODNewPtr
function allocates space for the window structure in temporary memory
rather than the application heap.

2. Creates an OpenDoc window object.

The window-state object, available through the session object, instantiates an
OpenDoc window objects, which are wrappers for the platform-specific
windows. OpenDoc uses the window-state object and window objects to
keep track of each of the windows it handles in a platform-independent
manner.
If the Open method is opening a new document, CreateWindow calls the
ODWindowState method RegisterWindow to create the OpenDoc window object
and register it as a new window. To create and register the window for an
existing document, the method calls the ODWindowState method
RegisterWindowForFrame.

If the method fails to create the window successfully, it generates a dialog box
to notify the user, using the SamplePart utility method DoDialogBox. It also uses
the exception-handling utility SetErrorCode to let OpenDoc know the user was
already notified of the error.

Listing 2-8 shows the implementation of the CreateWindow method.

Listing 2-8 CreateWindow method

ODWindow* SamplePart::CreateWindow(Environment* ev,
ODFrame* frame,
ODType frameType,
WindowProperties* windowProperties)

{
 SOM_Trace("SamplePart","CreateWindow");

ODPlatformWindow platformWindow = kODNULL;
ODWindow* window = kODNULL;

CookbookBook : SamplePart Page 51 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

52 Opening the Part Into a Window

platformWindow = NewCWindow((Ptr)ODNewPtr(sizeof(WindowRecord)),
&(windowProperties->boundsRect),
windowProperties->title,
kODFalse, /* visible */
windowProperties->procID,
(WindowPtr)-1L,
windowProperties->hasCloseBox,
windowProperties->refCon);

if (platformWindow)
{

TRY
ODWindowState* windowState = ODGetSession(ev,fSelf)->GetWindowState(ev);
ODBoolean saveWindow = (ODISOStrCompare(frameType,kODFrameObject) == 0);
ODBoolean shouldDispose = kODFalse;

if (frame == kODNULL)
{

window = windowState->
RegisterWindow(ev,

platformWindow, // Mac OS WindowPtr
frameType, // Frame persistent?
windowProperties->isRootWindow, // Document window?
windowProperties->isResizable, // Resizeable?
windowProperties->isFloating, // Floating?
saveWindow, // Window persistent?
shouldDispose, // Dispose when done?
fSelf, // Self reference
gGlobals->fFrameView, // What view?
gGlobals->fMainPresentation, // What presentation?
windowProperties->sourceFrame); // Source frame, if any

}
else
{

window = windowState->
RegisterWindowForFrame(ev,

platformWindow,
frame,
windowProperties->isRootWindow,
windowProperties->isResizable,

CookbookBook : SamplePart Page 52 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Handling Frame Layout 53

S
am

pleP
art Tutorial

2

windowProperties->isFloating,
saveWindow,
shouldDispose,
windowProperties->sourceFrame);

}
CATCH_ALL

CloseWindow(platformWindow);
ODDisposePtr(platformWindow);
ODSShort errMsgNum = (!frame && windowProperties->sourceFrame)

? kErrCantOpenPartWindow : kErrCantOpenDocWindow;
this->DoDialogBox(ev, frame, kErrorBoxID, errMsgNum);
SetErrorCode(kODErrAlreadyNotified);
RERAISE;

ENDTRY
}

return window;
}

Handling Frame Layout 2

Parts lay themselves out for display in a document according to the demands
of their content and in negotiation with their containing parts. This process
takes place through the mechanism of the part’s display frames. Methods
illustrating how SamplePart handles its display frames are included in this
section.

SamplePart is a noncontainer part—it does not support embedding of other
parts in it—so its frame layout considerations are somewhat simpler than those
of container parts. Nonetheless, SamplePart participates in the layout
negotiations of its containing part when it is itself embedded in another part. In
addition, SamplePart supports multiple display frames, displaying itself in
multiple frames and synchronizing those displays as necessary.

The DisplayFrameAdded Method 2

OpenDoc calls the DisplayFrameAdded method when a new display frame is
created for the part, for example, after the containing part calls the draft’s

CookbookBook : SamplePart Page 53 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

54 Handling Frame Layout

CreateFrame method. Generally, in response to the DisplayFrameAdded call, a
part should set itself up to manage the new frame and ensure that it can handle
the frame’s display requirements.

The SamplePart object’s implementation of the DisplayFrameAdded method
performs the following actions:

1. Sets up the presentation and view type correctly.

The method checks the new frame’s presentation and view type. If the
frame’s presentation is not the SamplePart main presentation type, the
method sets it to be so. If the view type is null, the method sets it to frame
view, the most typical preferred type.

2. Stores part info data for the new frame.

SamplePart creates a CFrameInfo object for this purpose and stores a
reference to it in the frame’s part info field.

3. Sets the frame’s window disposal flag.

If the frame being added is a root frame, then it has a window associated
with it, and the window must be disposed of when the frame is removed.
The window disposal flag is checked in SamplePart’s internal CleanupWindow
method.

4. Updates the part’s frame list.

Finally, the method creates a proxy for the new frame and adds a reference
to the proxy to its internal display frame list.

Listing 2-9 shows the implementation of the DisplayFrameAdded method.

Listing 2-9 DisplayFrameAdded method

void SamplePart::DisplayFrameAdded(Environment* ev,
 ODFrame* frame)

{
SOM_Trace("SamplePart","DisplayFrameAdded");

if (frame->GetPresentation(ev) != gGlobals->fMainPresentation)
frame->SetPresentation(ev, gGlobals->fMainPresentation);

if (frame->GetViewType(ev) == kODNullTypeToken)
frame->SetViewType(ev, gGlobals->fFrameView);

CookbookBook : SamplePart Page 54 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Handling Frame Layout 55

S
am

pleP
art Tutorial

2

CFrameInfo* frameInfo = new CFrameInfo;
frame->SetPartInfo(ev, (ODInfoType)frameInfo);

if (frame->IsRoot(ev))
frameInfo->SetShouldDisposeWindow(kODTrue);

CFrameProxy* proxy = new CFrameProxy;
proxy->InitFrameProxy(ev,frame);
fDisplayFrames->Add(proxy);

this->SetDirty(ev);
}

The DisplayFrameConnected Method 2

OpenDoc calls the DisplayFrameConnected method if the part is embedded and
the containing part reads the display frame into memory, having previously
written it to storage. This occurs when the frame becomes visible through
scrolling or other actions. OpenDoc calls this method instead of
DisplayFrameAdded because a new frame is not being created; an existing one is
being reconnected to the part.

The SamplePart object’s implementation of the DisplayFrameConnected method
performs the following actions:

1. Updates the part’s frame list.

The method iterates over SamplePart’s list of display frames, attempting to
match the frame’s ID number with the ID numbers of the frame proxies in
the list. If there is no match, the method adds the frame. If there is a match,
the method updates the proxy’s internal fields with information obtained
from the frame.

2. Ensures that the presentation is meaningful.

The part editor must be able to display the frame, so it must recognize the
presentation. In SamplePart’s case, the method compares the frame’s
presentation to the main presentation stored in the globals structure. If it
differs, the method sets it to be the main presentation.

3. Handles the root frame case.

If the frame is a root frame, the method does two things: it sets the window
disposal flag to kODTrue, and it sets the view type to frame view.

CookbookBook : SamplePart Page 55 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

56 Handling Frame Layout

Listing 2-10 shows the implementation of the DisplayFrameConnected method.

Listing 2-10 DisplayFrameConnected method

void SamplePart::DisplayFrameConnected(Environment* ev,
ODFrame* frame)

{
 SOM_Trace("SamplePart","DisplayFrameConnected");

ODBoolean found = kODFalse;
CListIterator fiter(fDisplayFrames);
for (CFrameProxy* proxy = (CFrameProxy*) fiter.First();

fiter.IsNotComplete(); proxy = (CFrameProxy*) fiter.Next())
{

if (proxy->GetID() == frame->GetID(ev))
{

proxy->SetFrame(ev,frame);
found = kODTrue;

}
}
if (found)
{

if (frame->GetPresentation(ev) != gGlobals->fMainPresentation)
frame->SetPresentation(ev, gGlobals->fMainPresentation);

if (frame->IsRoot(ev))
{

CFrameInfo* frameInfo = (CFrameInfo*) frame->GetPartInfo(ev);
frameInfo->SetShouldDisposeWindow(kODTrue);

if (frame->GetViewType(ev) != gGlobals->fFrameView)
frame->SetViewType(ev, gGlobals->fFrameView);

}
}
else
{

this->DisplayFrameAdded(ev, frame);
}

}

CookbookBook : SamplePart Page 56 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Handling Frame Layout 57

S
am

pleP
art Tutorial

2

The DisplayFrameRemoved Method 2

OpenDoc calls a part’s DisplayFrameRemoved method when its containing part
has permanently removed one of the part’s display frames. Generally,
implementations of the DisplayFrameRemoved method perform any actions
required to remove the frame, including removing frames embedded within
the removed frame, relinquishing foci, and updating the part’s internal frame
list.

The SamplePart object’s implementation of the DisplayFrameRemoved method
performs the following actions:

1. Relinquishes any foci owned by the frame.

The method calls the SamplePart object’s internal RelinquishAllFoci method,
which instantiates a temporary frame object to wrap the reference returned
by the arbitrator for each of the foci a SamplePart frame could own: the
selection focus and the menu focus. The RelinquishAllFoci method
compares the focus owner with the frame to be removed, and, if they are
equal, relinquishes the focus through the arbitrator and notifies the part that
the focus is lost.
The RelinquishAllFoci method uses the TempODFrame class, a C++ template
class declared in the file TempObj.h, and the ODObjectsAreEqual function,
defined in the file ODUtils.h. They are described in Appendix A, “OpenDoc
Utilities.”

2. Cleans up the display frame references.

The method calls the SamplePart object’s internal CleanupDisplayFrame
method. If this frame (that is, the frame to be removed) has a source frame,
the CleanupDisplayFrame method gets a reference to the source frame and to
its frame info object. It invalidates the source frame to force it to redraw
without any possible effects of having been synchronized with this frame.
The method notifies the source frame that it is going away and releases this
frame’s reference to the source frame (decrementing the source frame’s
reference count).
If this frame is a root frame, then it is in a part window which is being
closed, so the CleanupDisplayFrame method notifies the source frame that it
no longer has a part window. Conversely, if the frame has a part window,
the method closes and removes it.
If the frame being removed has a dependent frame, the CleanupDisplayFrame
method notifies it that its source frame is being removed and releases its
own reference to the dependent frame.

CookbookBook : SamplePart Page 57 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

58 Handling Frame Layout

3. Cleans up any window associated with the frame.

The method calls the SamplePart object’s internal CleanupWindow method,
which checks this frame’s ShouldDisposeWindow flag. If the flag is true, the
method retrieves references to the frame’s OpenDoc window object and its
Mac OS platform window structure. It releases the OpenDoc window object,
then closes and disposes of the platform window.

4. Cleans up the frame and removes it from the part’s internal frame list.

The method sets to null its pointer to its frame info object, then deletes the
object using the ODDeleteObject utility macro (which is defined in the
ODUtils.h file). Finally, the method removes this frame from its internal
display frame list and sets the part’s dirty flag.

If any of the preceding actions causes an exception to be thrown, the method
catches it in its CATCH_ALL handler, which displays an error dialog box to the
user and propagates the error.

Listing 2-11 shows the implementation of the DisplayFrameRemoved method.

Listing 2-11 DisplayFrameRemoved method

void SamplePart::DisplayFrameRemoved(Environment* ev,
 ODFrame* frame)

{
 SOM_Trace("SamplePart","DisplayFrameRemoved");

TRY
CFrameInfo* frameInfo = (CFrameInfo*) frame->GetPartInfo(ev);
this->RelinquishAllFoci(ev, frame);
this->CleanupDisplayFrame(ev, frame, kFrameRemoved);
this->CleanupWindow(ev, frame);
frame->SetPartInfo(ev, (ODInfoType) kODNULL);
ODDeleteObject(frameInfo);

CListIterator fiter(fDisplayFrames);
for (CFrameProxy* proxy = (CFrameProxy*) fiter.First();

fiter.IsNotComplete(); proxy = (CFrameProxy*) fiter.Next())
{

if (ODObjectsAreEqual(ev, proxy->GetFrame(ev), frame))
{

CookbookBook : SamplePart Page 58 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Handling Frame Layout 59

S
am

pleP
art Tutorial

2

fiter.RemoveCurrent();
delete proxy;

}
}
this->SetDirty(ev);

CATCH_ALL
this->DoDialogBox(ev, frame, kErrorBoxID, kErrRemoveFrame);
SetErrorCode(kODErrAlreadyNotified);
RERAISE;

ENDTRY
}

The DisplayFrameClosed Method 2

OpenDoc calls the DisplayFrameClosed method when a frame is closed as a
result of the user closing its document. The SamplePart implementation of the
DisplayFrameClosed method is virtually identical to that of its
DisplayFrameRemoved method except it does not cache runtime information, so it
does not set the part’s dirty flag. Also, the DisplayFrameClosed method does not
delete the frame proxy object because closed frames may be reconnected before
the document is finally closed.

Listing 2-12 shows the implementation of the DisplayFrameClosed method.

Listing 2-12 DisplayFrameClosed method

void SamplePart::DisplayFrameClosed(Environment* ev,
 ODFrame* frame)

{
SOM_Trace("SamplePart","DisplayFrameClosed");

TRY
CFrameInfo* frameInfo = (CFrameInfo*) frame->GetPartInfo(ev);
this->RelinquishAllFoci(ev, frame);
this->CleanupDisplayFrame(ev, frame, kFrameClosed);
this->CleanupWindow(ev, frame);
frame->SetPartInfo(ev, (ODInfoType) kODNULL);
ODDeleteObject(frameInfo);

CookbookBook : SamplePart Page 59 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

60 Handling Frame Layout

CListIterator fiter(fDisplayFrames);
for (CFrameProxy* proxy = (CFrameProxy*) fiter.First();

fiter.IsNotComplete(); proxy = (CFrameProxy*) fiter.Next())
{

if (proxy->GetID() == frame->GetID(ev))
{

proxy->Purge(ev);
}

}

CATCH_ALL
this->DoDialogBox(ev, frame, kErrorBoxID, kErrRemoveFrame);
SetErrorCode(kODErrAlreadyNotified);
RERAISE;

ENDTRY
}

The AttachSourceFrame Method 2

OpenDoc calls a part’s AttachSourceFrame method during creation of a part
window from a containing part. That is, if SamplePart is embedded in a frame
of another part, and that frame is opened into a part window, the containing
part iterates over its embedded frames and adds new corresponding frames in
the part window. After each new embedded frame is created, the containing
part calls the AttachSourceFrame method.

Listing 2-13 shows the implementation of the AttachSourceFrame method.

Listing 2-13 AttachSourceFrame method

void SamplePart::AttachSourceFrame(Environment* ev,
ODFrame* frame,
ODFrame* sourceFrame)

{
 SOM_Trace("SamplePart","AttachSourceFrame");

CFrameInfo* frameInfo = (CFrameInfo*) frame->GetPartInfo(ev);
frameInfo->SetSourceFrame(ev, sourceFrame);

CookbookBook : SamplePart Page 60 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Handling Frame Layout 61

S
am

pleP
art Tutorial

2

frameInfo = (CFrameInfo*) sourceFrame->GetPartInfo(ev);
frameInfo->SetDependentFrame(ev, frame);

}

The FrameShapeChanged Method 2

OpenDoc calls a part’s FrameShapeChanged method whenever the part’s display
frame’s shape has been changed, either by the user or by the containing part (if
this part is embedded). OpenDoc passes a pointer to the frame whose shape
has changed with the method call. The basic responsibility of this method is to
update all synchronized frames by propagating the new frame shape to them.
To do so, the method finds all the synchronized frames, pointers to which are
stored in this frame’s CFrameInfo object, and calls each frame’s
RequestFrameShape method.

Listing 2-14 shows the implementation of the FrameShapeChanged method.

Listing 2-14 FrameShapeChanged method

void SamplePart::FrameShapeChanged(Environment* ev,
ODFrame* frame)

{
SOM_Trace("SamplePart","FrameShapeChanged");

if (!frame->IsRoot(ev))
{

TempODShape frameShape = frame->AcquireFrameShape(ev, kODNULL);
CFrameInfo* frameInfo = (CFrameInfo*) frame->GetPartInfo(ev);
ODFrame* displayFrame;

if (frameInfo->HasSourceFrame())
{

displayFrame = frameInfo->GetSourceFrame(ev);

TempODShape frameShapeCopy = frameShape->Copy(ev);
TempODShape returnShape = displayFrame->

RequestFrameShape(ev, frameShapeCopy, kODNULL);

displayFrame->Invalidate(ev, kODNULL, kODNULL);
}

CookbookBook : SamplePart Page 61 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

62 Drawing the Part

if (frameInfo->HasDependentFrame())
{

displayFrame = frameInfo->GetDependentFrame(ev);

TempODShape frameShapeCopy = frameShape->Copy(ev);
TempODShape returnShape = displayFrame->

RequestFrameShape(ev, frameShapeCopy, kODNULL);

displayFrame->Invalidate(ev, kODNULL, kODNULL);
}

}
}

Drawing the Part 2

Every part editor must implement its Draw method so it can display the visible
portion of its content on demand, in response to the Draw call. Most part editors
perform drawing of their content synchronously; that is, they allow OpenDoc
to call the Draw method of their part editor object (ODPart subclass). OpenDoc
calls the Draw method whenever portions of the document are marked invalid,
as when the user scrolls a part’s content into view. However, part editors can
also draw asynchronously by calling their own Draw method. For example, a
part that represents a clock would need to update and redraw its display every
second.

To display its content, a part must have at least one frame, and it may have
more than one frame, even in a single window. Part editors can display their
content in different frames simultaneously, and they can display them
differently in the same frame at different times.

During drawing, the part editor is responsible for examining the frame and
displaying the correct information in the frame, properly transformed and
clipped. If additional information is needed to perform rendering properly, the
part editor may store it in the part info field of the frame or the facet.

The proper way to render a part on a particular display device may also vary
depending on whether the device is static or dynamic. A part editor can use the
isDynamic flag of the canvas object to determine the nature of the interaction

CookbookBook : SamplePart Page 62 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Drawing the Part 63

S
am

pleP
art Tutorial

2

style and draw its part accordingly. For example, it may draw scroll bars on a
dynamic canvas but omit them for a static one.

The basic steps to perform in drawing are as follows:

1. Prepare the platform graphics environment for drawing.

2. Get the view type, the presentation if required, and any other information
needed to determine the proper display method, such as selection state,
highlight state, and the state of the stationery flag.

3. Render the content appropriately.

4. Restore the old graphics environment.

In SamplePart, these steps are accomplished by the Draw method and three
subroutine methods to handle the four standard view types: frame, large icon,
small icon, and thumbnail. In addition, SamplePart has methods that prepare
for drawing and handle various other situations affecting imaging behavior.
The following sections discuss these methods.

The Draw Method 2

OpenDoc calls the part object’s Draw method whenever a facet of a part’s
display frame intersects the invalidated portion of an OpenDoc window. Parts
may call their own Draw method whenever their content needs to be rendered
onto a canvas.

The SamplePart object’s implementation of the Draw method performs the
following actions:

1. Focuses the Mac OS drawing environment.

The SamplePart object’s Draw method focuses the Mac OS QuickDraw port,
origin, and clip shape for drawing in the facet passed into the Draw method.
SamplePart accomplishes this by instantiating a stack-based object (here
named initiateDrawing) of class CFocus, which is defined in the OpenDoc
utility file FocusLib.cpp. The CFocus constructor saves the old port, origin,
and clip shape and sets the new ones properly. At the end of the Draw
method, when control passes out of its scope, the CFocus object is
automatically deleted, and its destructor restores the port, origin, and clip
shape previously in force.

CookbookBook : SamplePart Page 63 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

64 Drawing the Part

2. Gets the view type of the frame to which the current facet belongs.

The method gets a pointer to the frame from the facet, a pointer to which is
passed in from OpenDoc with the Draw call. The frame is queried for its view
type.

3. Draws the part’s content appropriately for the view type.

SamplePart has a separate method for each view type that can draw its
content properly, and it branches to the appropriate one.

Listing 2-15 shows the implementation of the Draw method.

Listing 2-15 Draw method

void SamplePart::Draw(Environment* ev,
 ODFacet* facet,
 ODShape* invalidShape)

{
 SOM_Trace("SamplePart","Draw");

CFocus initiateDrawing(ev, facet, invalidShape);

ODTypeToken view = facet->GetFrame(ev)->GetViewType(ev);

if (view == gGlobals->fLargeIconView || view == gGlobals->fSmallIconView)
this->DrawIconView(ev, facet);

else if (view == gGlobals->fThumbnailView)
this->DrawThumbnailView(ev, facet);

else
this->DrawFrameView(ev, facet);

}

The DrawIconView Method 2

The SamplePart object’s internal DrawIconView method draws an appropriate
version of the frame’s icon.

The DrawIconView method performs the following actions:

CookbookBook : SamplePart Page 64 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Drawing the Part 65

S
am

pleP
art Tutorial

2

1. Sets the icon transform type.

The method checks the facet’s highlight state. If the facet is highlighted, the
method will display the selected version of the icon. If a part window exists,
it will display the version of the icon indicating that it is also open.

2. Draws the icon.

The method sets the size of the rectangle in which to display the icon
correctly and calls the Mac OS Toolbox routine PlotIconID to draw the
correct version of the icon according to its icon transform type. Large icons
are drawn in a 32-by-32-pixel rectangle; small icons are drawn in a
16-by-16-pixel rectangle.

Listing 2-16 shows the implementation of the DrawIconView method.

Listing 2-16 DrawIconView method

void SamplePart::DrawIconView(Environment* ev,
 ODFacet* facet)

{
 SOM_Trace("SamplePart","DrawIconView");

Rect iconRect;
IconTransformType transformType = ttNone;
CFrameInfo* frameInfo;
ODFrame* frame;
ODTypeToken viewType;

frame = facet->GetFrame(ev);
viewType= frame->GetViewType(ev);
frameInfo = (CFrameInfo*) frame->GetPartInfo(ev);

if (facet->GetHighlight(ev) == kODFullHighlight)
transformType = ttSelected;

if (frameInfo->HasPartWindow() &&
 frameInfo->GetPartWindow()->IsShown(ev))
transformType |= ttOpen;

if (viewType == gGlobals->fLargeIconView)
SetRect(&iconRect, 0, 0, kODLargeIconSize, kODLargeIconSize);

CookbookBook : SamplePart Page 65 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

66 Drawing the Part

else // (viewType == gGlobals->fSmallIconView)
SetRect(&iconRect, 0, 0, kODSmallIconSize, kODSmallIconSize);

CUsingLibraryResources res;
PlotIconID(&iconRect, atAbsoluteCenter, transformType, kBaseResourceID);

}

The DrawThumbnailView Method 2

Normally, a thumbnail view of a frame is a 64-by-64-pixel representation of its
actual content. However, SamplePart has no intrinsic content, so its
DrawThumbnailView method simply displays a 'PICT' resource, a handle to
which was previously stored in the fThumbnail field of the part’s global variable
structure. The same strategy is appropriate for parts that have been newly
created from stationery and have no content yet. When the user has added
content a “real” thumbnail can be created.

The DrawThumbnailView method performs the following actions:

1. Sets the bounding rectangle of the thumbnail.

The method retrieves the bounding rectangle of the thumbnail picture
resource by dereferencing its handle and sets the drawing offset accordingly.

2. Draws the picture.

The method calls the QuickDraw routine DrawPicture to draw the picture
resource at the proper position.

Listing 2-17 shows the implementation of the DrawThumbnailView method.

Listing 2-17 DrawThumbnailView method

void SamplePart::DrawThumbnailView(Environment*ev,
ODFacet*/*facet*/)

{
 SOM_Trace("SamplePart","DrawThumbnailView");

LoadThumbnail(ev, &gGlobals->fThumbnail);

Rect bounds = (**(PicHandle) gGlobals->fThumbnail).picFrame;

CookbookBook : SamplePart Page 66 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Drawing the Part 67

S
am

pleP
art Tutorial

2

OffsetRect(&bounds, -bounds.left, -bounds.top);
DrawPicture((PicHandle) gGlobals->fThumbnail, &bounds);

}

The DrawFrameView Method 2

The implementation of the SamplePart object’s internal DrawFrameView method
(called by the part’s Draw method) renders the full content view of the part
when the view type is frame. SamplePart has no intrinsic content; the frame
view simply draws two text strings with stylistic variations.

The DrawFrameView method performs the following actions:

1. Gets the facet’s frame and canvas, the frame shape, and the QuickDraw
region of the frame area.

The method uses the facet passed as a parameter to get the frame. If the
frame has a source frame, the method uses the source frame instead. The
method gets a reference to the facet’s canvas, which represents its
underlying platform-specific drawing system (QuickDraw), so that the
frame shape is returned in the correct coordinate system. The method then
gets the shape and QuickDraw region of the frame.

2. Sets the font characteristics.

The method calculates the height of the frame and sets the font size to 80%
of the frame height. Then it sets the font to be the default application font for
the current script system and sets its variation to be bold and condensed.

3. Gets the text string to be drawn.

Before acquiring the string resource to draw, you must set up the resource
chain so the resources contained in your dynamic library are available. This
is handled in the DrawFrameView method by the OpenDoc utility routine
BeginUsingLibraryResources, which is defined in the file UseRsrcM.cpp. At
this point the method saves the QuickDraw pen state and resets it to normal,
acquires the individual string from the resource, and moves the pen to an
appropriate baseline position in preparation for drawing the text.

4. Draws the text.

The method calls the QuickDraw routine DrawString to render a text string
acquired from its string resource onto the screen, using the font
characteristics calculated previously. If the facet’s highlight state is
kODFullHighlight, indicating that the part is selected, the method fills in the

CookbookBook : SamplePart Page 67 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

68 Drawing the Part

background of the drawing port with the highlight color. The method then
draws another text string acquired from its string resource, this time at the
fixed point size of 24 points, centered in the frame, and in color reversed
from its background.

5. Restores the resource chain and port characteristics.

The method calls EndUsingLibraryResources to restore the resource chain as
configured prior to calling BeginUsingLibraryResources. You must call the
ending routine if you have called the beginning routine, so you must not
throw an exception between the two calls. If an exception is likely, therefore,
you should save it and throw it after calling EndUsingLibraryResources. Last,
the method restores the QuickDraw graphics port and resets its text font,
size, and variation.

Listing 2-18 shows the implementation of the DrawFrameView method.

Listing 2-18 DrawFrameView method

void SamplePart::DrawFrameView(Environment* ev,
ODFacet* facet)

{
 SOM_Trace("SamplePart","DrawFrameView");

ODFrame* frame;
ODUShort frameHeight = 0;
ODUShort frameWidth = 0;
RgnHandle frameRgn;
FontInfo finfo;
Str63 defaultString;
CFrameInfo* frameInfo;
GrafPtr port;

GetPort(&port);
EraseRect(&port->portRect);

frameInfo = (CFrameInfo*) facet->GetFrame(ev)->GetPartInfo(ev);
if (frameInfo->HasSourceFrame())

frame = frameInfo->GetSourceFrame(ev);
else

CookbookBook : SamplePart Page 68 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Drawing the Part 69

S
am

pleP
art Tutorial

2

frame = facet->GetFrame(ev);

ODCanvas* biasCanvas = facet->GetCanvas(ev);

TempODShape frameShape = frame->AcquireFrameShape(ev, biasCanvas);
frameRgn = frameShape->GetQDRegion(ev);
frameHeight = (**frameRgn).rgnBBox.bottom - (**frameRgn).rgnBBox.top;
frameWidth = (**frameRgn).rgnBBox.right - (**frameRgn).rgnBBox.left;

ODUShort size = port->txSize;
ODUShort font = port->txFont;
Style face = port->txFace;

TextSize((ODUShort)(frameHeight * 0.8));
TextFont(1);
TextFace(bold + condense);

GetFontInfo(&finfo);

ODSLong rfRef;
rfRef = BeginUsingLibraryResources();
{

PenState penState;
GetPenState(&penState);

PenNormal();
GetIndString(defaultString, kMenuStringResID, kDefaultContent1ID);
MoveTo((frameWidth / 2) - (StringWidth(defaultString) / 2),

frameHeight - (finfo.descent - 2));
DrawString(defaultString);

if (facet->GetHighlight(ev) == kODFullHighlight)
{

UInt8 mode = LMGetHiliteMode();
BitClr(&mode,pHiliteBit);
LMSetHiliteMode(mode);
InvertRect(&port->portRect);

}

TextMode(srcXor);
TextSize(24);

CookbookBook : SamplePart Page 69 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

70 Drawing the Part

TextFace(bold + extend);

GetIndString(defaultString, kMenuStringResID, kDefaultContent2ID);
MoveTo((frameWidth / 2) - (StringWidth(defaultString) / 2),

(frameHeight / 2) + 6);
DrawString(defaultString);

SetPenState(&penState);
}
EndUsingLibraryResources(rfRef);

// Restore port chararcteristics.
SetPort(port);
port->txSize = size;
port->txFont = font;
port->txFace = face;

}

The ViewTypeChanged Method 2

OpenDoc calls a part’s ViewTypeChanged method when the view type of one of
the part’s display frames has been modified, such as when the user changes the
view type in the Part Info dialog box. In general, the ViewTypeChanged method
should set up the facilities needed for a part to display itself with a particular
view type.

The SamplePart object’s implementation of ViewTypeChanged method performs
the following actions:

1. Gets the view type of the frame.

For this purpose, the ODFrame class provides a GetViewType method, which
returns a tokenized string representing the view type.

2. If thumbnail is the view type, prepares the thumbnail view.

In this case, ViewTypeChanged calls the SamplePart object’s internal method
GenerateThumbnail. The GenerateThumbnail method creates a 64-by-64-pixel
representation of the current display frame. In SamplePart, this method calls
the SamplePart utility method LoadThumbnail, which simply returns a
handle to a preexisting 'PICT' resource. The method puts a pointer to the
thumbnail into the global variables structure. If the GenerateThumbnail
method is unable to load the resource for some reason, it defaults to the

CookbookBook : SamplePart Page 70 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Drawing the Part 71

S
am

pleP
art Tutorial

2

regular frame view and throws the error returned by the Resource Manager
as an exception (or, if there is no Resource Manager error, the method throws
the resNotFound error).

3. Changes the frame’s used shape to match the new view type.

The method calls the SamplePart object’s internal method CalcNewUsedShape
to calculate the appropriate used shape for the new view type. If the view
type is frame view, the CalcNewUsedShape method intentionally returns a null
used shape, which resets the used shape to exactly the frame shape.
Otherwise, the CalcNewUsedShape method returns a used shape equal to the
appropriate icon or thumbnail view.

4. Invalidates the frame.

The ViewTypeChanged method invalidates the frame, calls the frame’s
ChangeUsedShape method with the new used shape, and then invalidates the
frame again.

Listing 2-19 shows the implementation of the ViewTypeChanged method,
Listing 2-20 shows the GenerateThumbnail method, Listing 2-21 shows the
LoadThumbnail method, and Listing 2-22 shows the CalcNewUsedShape method.

Listing 2-19 ViewTypeChanged method

void SamplePart::ViewTypeChanged(Environment* ev,
 ODFrame* frame)

{
 SOM_Trace("SamplePart","ViewTypeChanged");

ODTypeTokenview = frame->GetViewType(ev);

if (view == gGlobals->fThumbnailView)
this->GenerateThumbnail(ev, frame);

TempODShape newUsedShape = this->CalcNewUsedShape(ev, frame);

frame->Invalidate(ev, kODNULL, kODNULL);
frame->ChangeUsedShape(ev, newUsedShape, kODNULL);
frame->Invalidate(ev, kODNULL, kODNULL);

}

CookbookBook : SamplePart Page 71 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

72 Drawing the Part

Listing 2-20 GenerateThumbnail method

void SamplePart::GenerateThumbnail(Environment* ev,
ODFrame* frame)

{
 SOM_Trace("SamplePart","GenerateThumbnail");

LoadThumbnail(ev, &gGlobals->fThumbnail);

if (gGlobals->fThumbnail == kODNULL)
{

frame->ChangeViewType(ev, gGlobals->fFrameView);
THROW_IF_ERROR((ODError)ResError());
THROW(resNotFound);

}
}

Listing 2-21 LoadThumbnail method

void LoadThumbnail(Environment* ev, Handle* thumbnail)
{

if (*thumbnail) return;

ODSLong rfRef;
rfRef = BeginUsingLibraryResources();
{

*thumbnail = (Handle) GetPicture(kThumbnailPicture);
}
EndUsingLibraryResources(rfRef);

}

Listing 2-22 CalcNewUsedShape method

ODShape* SamplePart::CalcNewUsedShape(Environment* ev,
 ODFrame* frame)

{
 SOM_Trace("SamplePart","CalcNewUsedShape");

CookbookBook : SamplePart Page 72 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Drawing the Part 73

S
am

pleP
art Tutorial

2

ODShape* usedShape = kODNULL; ODVolatile(usedShape);
RgnHandle usedRgn; ODVolatile(usedRgn);

ODTypeToken view = frame->GetViewType(ev);

if (view == gGlobals->fLargeIconView ||
view == gGlobals->fSmallIconView ||
view == gGlobals->fThumbnailView)

{
TRY

Rect bounds;
usedRgn = ODNewRgn();

if (view == gGlobals->fLargeIconView || view == gGlobals->fSmallIconView)
{

CUsingLibraryResources res;

SetRect(&bounds, 0, 0,
(view == gGlobals->fLargeIconView) ?

kODLargeIconSize : kODSmallIconSize,
(view == gGlobals->fLargeIconView) ?

kODLargeIconSize : kODSmallIconSize);

THROW_IF_ERROR(IconIDToRgn(usedRgn, &bounds,
atAbsoluteCenter, kBaseResourceID));

}
else if (view == gGlobals->fThumbnailView)
{

bounds = (**(PicHandle)gGlobals->fThumbnail).picFrame;
RectRgn(usedRgn,&bounds);

}
usedShape = frame->CreateShape(ev);
usedShape->SetQDRegion(ev, usedRgn);

CATCH_ALL
ODSafeReleaseObject(usedShape);
ODDisposeHandle((ODHandle)usedRgn);
usedShape = kODNULL;

ENDTRY

CookbookBook : SamplePart Page 73 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

74 Drawing the Part

}
return usedShape;

}

The GeometryChanged Method 2

OpenDoc calls the GeometryChanged method when the external transform or clip
shape of a facet belonging to the part’s display frame changes. The only action
of the SamplePart object’s implementation of the method is to invalidate the clip
shape of the facet, causing it to be redrawn.

Listing 2-23 shows the implementation of the GeometryChanged method.

Listing 2-23 GeometryChanged method

void SamplePart::GeometryChanged(Environment* ev,
 ODFacet* facet,
 ODBoolean clipShapeChanged,
 ODBoolean /* externalTransformChanged */)

{
 SOM_Trace("SamplePart","GeometryChanged");

if (clipShapeChanged)
facet->Invalidate(ev, kODNULL, kODNULL);

}

The HighlightChanged Method 2

OpenDoc calls a part’s HighlightChanged method when the highlight state of
one of its display frame’s facets changes. The method is responsible for
redrawing the facet’s content with highlighting that is consistent with that of
the containing part in which this part is embedded.

The SamplePart object’s implementation of the HighlightChanged method gets a
reference to the facet’s frame, then (if its view type is not a frame view) simply
invalidates the frame, causing its content to be redrawn. If the frame’s view
type is a frame view, the method does nothing.

Listing 2-24 shows the implementation of the HighlightChanged method.

CookbookBook : SamplePart Page 74 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Drawing the Part 75

S
am

pleP
art Tutorial

2

Listing 2-24 HighlightChanged method

void SamplePart::HighlightChanged(Environment* ev, ODFacet* facet)
{

ODFrame* frame = facet->GetFrame(ev);

if (frame->GetViewType(ev) != gGlobals->fFrameView)
frame->Invalidate(ev, kODNULL, kODNULL);

}

The FacetAdded Method 2

OpenDoc calls the FacetAdded method when the containing part (or OpenDoc)
adds a facet to one of the part’s display frames. The part’s basic responsibility
in response to the FacetAdded method call is to prepare to draw the content
visible in the new facet.

The SamplePart object’s implementation of FacetAdded retrieves the facet’s
frame and the frame’s info object. If the facet’s frame is the root frame of a
window, the method marks the frame for activation whenever the window is
selected.

Finally, the method handles the possibility of the frame having a hidden part
window. If the frame had become invisible previously, it would have hidden
any part window it had. Therefore, the method checks to see if this is the first
facet added to the frame, indicating that it is just becoming visible; if so, and if
the frame has a part window, the method shows the part window.

Listing 2-25 shows the implementation of the FacetAdded method.

Listing 2-25 FacetAdded method

void SamplePart::FacetAdded(Environment* ev,
 ODFacet* facet)

{
 SOM_Trace("SamplePart","FacetAdded");

ODFrame* frame = facet->GetFrame(ev);
CFrameInfo* frameInfo = (CFrameInfo*) frame->GetPartInfo(ev);

CookbookBook : SamplePart Page 75 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

76 Drawing the Part

if (frame->IsRoot(ev))
{

frameInfo->SetActiveFacet(facet);
frameInfo->SetFrameReactivate(kODTrue);

}
if ((CountFramesFacets(ev, frame) == 1))
{

TempODWindow window = frameInfo->AcquirePartWindow(ev);
if (window) window->Show(ev);

}
}

The FacetRemoved Method 2

OpenDoc calls a part’s FacetRemoved method when the containing part or
OpenDoc removes a facet from one of this part’s display frames.

The SamplePart object’s implementation of FacetRemoved retrieves the facet’s
frame, and, if the frame indicates that this is the active facet, the method marks
that indication false. Finally, if the facet being removed is the last facet
belonging to its frame, and if its containing frame is null, the method hides the
frame’s part window, if it has one.

Listing 2-26 shows the implementation of the FacetRemoved method.

Listing 2-26 FacetRemoved method

void SamplePart::FacetRemoved(Environment* ev,
 ODFacet* facet)

{
 SOM_Trace("SamplePart","FacetRemoved");

ODFrame* frame = facet->GetFrame(ev);
TempODFrame containingFrame = frame->AcquireContainingFrame(ev);
CFrameInfo* frameInfo = (CFrameInfo*) frame->GetPartInfo(ev);

if (ODObjectsAreEqual(ev, frameInfo->GetActiveFacet(), facet))
frameInfo->SetActiveFacet(kODNULL);

if ((CountFramesFacets(ev, frame) == 0) &&

CookbookBook : SamplePart Page 76 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Handling Events 77

S
am

pleP
art Tutorial

2

(containingFrame == kODNULL))
{

TempODWindow window = frameInfo->AcquirePartWindow(ev);
if (window) window->Hide(ev);

}
}

Handling Events 2

OpenDoc calls a part’s HandleEvent method when a user event occurs within
the purview of a focus currently owned by the part. For example, keystroke
events are dispatched to the part that owns the keystroke focus.
Geometry-based events, such as mouse clicks, are generally dispatched to the
part within whose frames they occur, regardless of which part is currently
active.

If the part editor handles the event, it should return a value of kODTrue. It can
return a value of kODFalse if it does not handle the event. If the frame’s
DoesPropagateEvents method returns kODTrue, then the event is sent to the
containing frame. If all containing frames fail to handle the event, and they
propagate it, the OpenDoc shell attempts to handle the event itself.

For a given event, the dispatcher locates a dispatch module, and the dispatch
module calls the part’s HandleEvent method. The facet parameter of the
HandleEvent method may be null (kODNULL), depending on the kind of event.
The frame parameter is always valid, except in the case of some null (idle)
events.

Event Constants 2

OpenDoc expects parts to handle the user events that are standard on the
Mac OS, as represented by the following list of constants:

kODEvtNull
kODEvtMouseDown
kODEvtMouseUp
kODEvtKeyDown
kODEvtKeyUp

CookbookBook : SamplePart Page 77 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

78 Handling Events

kODEvtAutoKey
kODEvtUpdate
kODEvtActivate
kODEvtOS

In addition to the standard Mac OS user events, parts should expect to receive
OpenDoc-defined events. All parts may receive the events represented by the
following constants:

kODEvtMenu
kODEvtWindow
kODEvtMouseEnter
kODEvtMouseWithin
kODEvtMouseLeave
kODEvtBGMouseDown

Container parts (those that can embed other parts) may also receive the events
represented by the following constants:

kODEvtMouseDownEmbedded
kODEvtMouseUpEmbedded
kODEvtMouseDownBorder
kODEvtMouseUpBorder
kODEvtBGMouseDownEmbedded

The constant names representing the events differ slightly from the standard
Mac OS event names for cross-platform compatibility. Part editors handle these
events differently according to their own requirements. Refer to the OpenDoc
Programmer’s Guide for the Mac OS for detailed information about handling
these types of events.

The HandleEvent Method 2

Generally, the implementation of a part editor’s HandleEvent method works in
much the same way as event-handling code in a standard Mac OS application.
That is, the implementation acquires the event record, then branches to the
appropriate event-handling routine based on the type of event. Unlike the
standard Mac OS application, you don’t need to poll for events by calling
WaitNextEvent; in the case of standard events, the event record is passed as a
parameter to the HandleEvent method.

CookbookBook : SamplePart Page 78 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Handling Events 79

S
am

pleP
art Tutorial

2

The SamplePart object’s implementation of the HandleEvent method performs
the following actions:

1. Performs a case switch on expected events.

An event is represented by an OpenDoc constant compared to the what field
of an ODEventData structure, a pointer to which is passed in the event
parameter of the HandleEvent call.

2. Branches to the appropriate subroutine method.

The HandleEvent method handles simple events without branching.

3. Returns a Boolean value indicating whether or not the event was handled.

Listing 2-27 shows the implementation of the HandleEvent method.

Listing 2-27 HandleEvent method

ODBoolean SamplePart::HandleEvent(Environment* ev,
 ODEventData* event,
 ODFrame* frame,
 ODFacet* facet,
 ODEventInfo* eventInfo)

{
 SOM_Trace("SamplePart","HandleEvent");

ODBoolean eventHandled = kODFalse;

switch (event->what)
{

case kODEvtMouseDown:
case kODEvtMouseUp:

eventHandled = this->HandleMouseEvent(ev, event, facet, eventInfo);
break;

case kODEvtMenu:
eventHandled = this->HandleMenuEvent(ev, event, frame);
break;

case kODEvtActivate:
this->WindowActivating(ev, frame, (event->modifiers & activeFlag));
eventHandled = kODTrue;
break;

case kODEvtMouseEnter:

CookbookBook : SamplePart Page 79 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

80 Handling Events

case kODEvtMouseLeave:
SetCursor(&ODQDGlobals.arrow);
eventHandled = kODTrue;
break;

case kODEvtMouseWithin:
eventHandled = kODTrue;
break;

case kODEvtNull:
case kODEvtMouseDownEmbedded:
case kODEvtMouseUpEmbedded:
case kODEvtMouseDownBorder:
case kODEvtMouseUpBorder:
case kODEvtWindow:
case kODEvtKeyDown:
case kODEvtKeyUp:
case kODEvtAutoKey:
case kODEvtOS:
case kODEvtDisk:
default:

break;
}
return eventHandled;

}

The SamplePart object’s HandleEvent method illustrates a minimal set of event
handlers that every part editor should implement. Naturally, you must also
prepare to handle other events to which your part must respond to behave
correctly.

The HandleMouseEvent Method 2

SamplePart calls its own internal HandleMouseEvent method from its
HandleEvent method when it receives a mouse event of type kODEvtMouseUp or
kODEvtMouseDown. OpenDoc passes the mouse event as a parameter to the part’s
HandleEvent method when the user clicks the mouse button within the bounds
of one of the part’s facets.

When a frame is inactive, the first mouse-up event (kODEvtMouseUp) it receives
should activate it. Inactive frames do not receive mouse-down events
(kODEvtMouseDown).

CookbookBook : SamplePart Page 80 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Handling Events 81

S
am

pleP
art Tutorial

2

The HandleMouseEvent method performs the following actions:

1. Ensures that the facet in which the mouse event occurred is valid.

If the facet parameter is null, the mouse event occurred outside the bounds
of a modal window, in which case the implementation causes the Mac OS to
sound a single system beep.

2. Handles a mouse-up event.

After determining that the event occurred inside a valid facet, the method
tests the event type against the kODEvtMouseUp constant.

3. Handles the window’s activation state.

If the event is a mouse-up, HandleMouseEvent checks the facet’s window. If
the window is not active, the method selects it and returns a value of
kODTrue, which indicates that the method handled the mouse-up event. If the
facet’s window is already active, the method continues.

4. Handles the frame’s activation state.

HandleMouseEvent retrieves the facet’s frame and the frame’s CFrameInfo part
info object. Using this information, the method determines if this is the
active frame; if not, it calls its ActivateFrame method, which activates the
frame by requesting the selection and menu foci.
The method stores the active facet in its frame’s CFrameInfo object, so the
part editor will be able to position a part window properly if the user later
chooses the View as Window command. If the ActivateFrame method call
returned successfully, HandleMouseEvent returns kODTrue; otherwise it returns
kODFalse.

5. Handles a mouse-down event.

If the event was not a mouse-up event, HandleMouseEvent tests if it was of
type kODEvtMouseDown. If so, the method localizes the coordinates of the
mouse-down event to the facet’s coordinates and calls the SamplePart
object’s internal DoMouseEvent method.
The SamplePart object’s DoMouseEvent method is empty. A part editor with
real work to do in response to a mouse-down event would do it at this point.
For example, if your part supports selection of its content by dragging the
mouse, as with a marquee or lasso tool, you would handle those events at
this point. Similarly, you would handle buttons or other controls here if they
were managed directly by your part.

CookbookBook : SamplePart Page 81 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

82 Handling Events

Listing 2-28 shows the HandleMouseEvent method. The ActivateFrame method is
included in the “Activation” section as Listing 2-38 on page 95.

Listing 2-28 HandleMouseEvent method

ODBoolean SamplePart::HandleMouseEvent(Environment* ev,
ODEventData* event,
ODFacet* facet,
ODEventInfo* eventInfo)

{
 SOM_Trace("SamplePart","HandleMouseEvent");

if (facet != kODNULL)
{

if (event->what == kODEvtMouseUp)
{

ODWindow* window = facet->GetWindow(ev);
TRY

if (!window->IsActive(ev))
window->Select(ev);

else
{

ODFrame* frame = facet->GetFrame(ev);

CFrameInfo* frameInfo = (CFrameInfo*) frame->GetPartInfo(ev);
if (!frameInfo->IsFrameActive())
{

if (this->ActivateFrame(ev, frame))
frameInfo->SetActiveFacet(facet);

else
return kODFalse;

}
}

CATCH_ALL
ENDTRY

}
else if (event->what == kODEvtMouseDown)
{

Point where;
where.h = FixedToInt(eventInfo->where.x);

CookbookBook : SamplePart Page 82 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Handling Events 83

S
am

pleP
art Tutorial

2

where.v = FixedToInt(eventInfo->where.y);
this->DoMouseEvent(ev, facet, &where);

}
}
else
{

SysBeep(1);
}
return kODTrue;

}

The HandleMenuEvent Method 2

SamplePart calls its own internal HandleMenuEvent method when it receives a
menu event (type kODEvtMenu). OpenDoc converts a mouse-down event that
occurs in the menu bar, or its keyboard equivalent, into a menu event. On
receiving an event of this type, the SamplePart object’s HandleEvent method
calls HandleMenuEvent, passing the event record and a pointer to the active
frame.

The HandleMenuEvent method performs the following actions:

1. Retrieves the message field of the event record.

The method uses the message field to determine the number of the menu
(contained in the high-order word) and the number of the menu item
(contained in the low-order word), for the menu selection made by the user.

2. Retrieves the position-independent number of the command.

With the menu and item numbers, the method calls the menu bar object’s
GetCommand method, which returns the command number of the user’s menu
selection.

3. Branches to the appropriate command handler method.

Comparing the command number to constants representing the commands
SamplePart can handle, the HandleMenuEvent method proceeds into a switch
statement. SamplePart implements only two commands: About and View As
Window. These cases call their appropriate subroutine method and return
kODTrue. The remaining unimplemented command numbers return kODFalse
by way of the default clause.

Listing 2-29 shows the implementation of the HandleMenuEvent method.

CookbookBook : SamplePart Page 83 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

84 Handling Events

Listing 2-29 HandleMenuEvent method

ODBoolean SamplePart::HandleMenuEvent(Environment* ev,
 ODEventData* event,
 ODFrame* frame)

{
 SOM_Trace("SamplePart","HandleMenuEvent");

ODULong menuResult = event->message;
ODUShort menu = HiWord(menuResult);
ODUShort item = LoWord(menuResult);

switch (gGlobals->fMenuBar->GetCommand(ev, menu, item))
{

case kODCommandAbout:
this->DoDialogBox(ev, frame, kAboutBoxID);
break;

case kODCommandViewAsWin:
this->Open(ev, frame);
break;

case kODCommandOpen:
case kODCommandInsert:
case kODCommandPageSetup:
case kODCommandPrint:
case kODCommandUndo:
case kODCommandRedo:
case kODCommandCut:
case kODCommandCopy:
case kODCommandPaste:
case kODCommandPasteAs:
case kODCommandClear:
case kODCommandSelectAll:
case kODCommandGetPartInfo:
case kODCommandPreferences:
default:

return kODFalse;
}
return kODTrue;

}

CookbookBook : SamplePart Page 84 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Handling Events 85

S
am

pleP
art Tutorial

2

The AdjustMenus Method 2

OpenDoc calls a part’s AdjustMenus method when a user event of type
kODEvtMouseDown occurs in the menu bar and the same part owns the menu
focus. AdjustMenus is a general-purpose menu-handling method. Its purpose is
to ensure that the visible state of the part’s menus accurately reflect the state of
the part. Accordingly, the AdjustMenus method enables and disables menu
items, depending on whether or not their commands are available, and it
changes the menu item text as necessary to describe accurately the actions
ensuing from choosing those items.

The SamplePart object’s implementation of the AdjustMenus method performs
the following actions:

1. Validates the menu bar if this part is the root part.

The menu bar object always calls the root part’s AdjustMenus method before
calling the menu focus owner’s AdjustMenus method. Any other part can
swap out the base menu bar at any time. Therefore, if the menu bar object
has changed since it was previously copied, the method recopies the base
menu bar from the window-state object. After copying the menu bar, you
must also reinstall your part’s menus.

2. Enables or disables the menu commands, depending on conditions.

The method enables the View As Window command, but only if the frame
that owns the menu focus (a pointer to which is passed into the method as it
is called) is not the root frame of the window. (The frame that owns the
menu focus is usually the active frame.)

3. Sets the text of the About menu item correctly.

The method puts a reference to the focus owner’s frame into a temporary
frame object and tests it against the frame reference passed into this method
call. If this frame owns the menu focus, the method gets the About menu
item text from the SamplePart menu string resource, creates a temporary
international text structure for the text, and sets the menu item. The
temporary object automatically disposes of the memory allocated for the
international text.

Listing 2-30 shows the implementation of the AdjustMenus method.

CookbookBook : SamplePart Page 85 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

86 Handling Events

Listing 2-30 AdjustMenus method

void SamplePart::AdjustMenus(Environment* ev,
 ODFrame* frame)

{
 SOM_Trace("SamplePart","AdjustMenus");

if (frame->IsRoot(ev))
{

if (gGlobals->fMenuBar->IsValid(ev) == kODFalse)
{

ODReleaseObject(ev, gGlobals->fMenuBar);
gGlobals->fMenuBar =

ODGetSession(ev,fSelf)->GetWindowState(ev)->CopyBaseMenuBar(ev);
}

}

gGlobals->fMenuBar->EnableCommand(ev, kODCommandViewAsWin, !frame->IsRoot(ev));

TRY
ODArbitrator* arbitrator = ODGetSession(ev,fSelf)->GetArbitrator(ev);
TempODFrame menuOwner =

arbitrator->AcquireFocusOwner(ev, gGlobals->fMenuFocus);

if (ODObjectsAreEqual(ev, frame, menuOwner))
{

Str63 text;
ODGetIndString(text, kMenuStringResID, kAboutTextID);
TempODIText menuItem(CreateIText(gGlobals->fEditorsScript,

gGlobals->fEditorsLanguage, (StringPtr)&text));
gGlobals->fMenuBar->SetItemString(ev, kODCommandAbout, menuItem);

}
CATCH_ALL

// Consume exception
ENDTRY

}

CookbookBook : SamplePart Page 86 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Handling Events 87

S
am

pleP
art Tutorial

2

The DoDialogBox Method 2

SamplePart calls its own internal DoDialogBox method from its HandleMenuEvent
method when the user chooses the About command. SamplePart also calls
DoDialogBox from other methods to display error messages to the user. The
method illustrates how parts can display a modal dialog box properly.

The DoDialogBox method performs the following actions:

1. Gets access to the session object.

Access to the session object is provided by the ODGetSession utility function.
The session object, in turn, provides needed access to the arbitrator and
window-state objects.

2. Gets a valid frame.

Only frames own foci. If the calling method does not pass in a valid frame
reference, the DoDialogBox method gets one from SamplePart’s internal list of
display frames. This frame requests the modal focus needed to keep other
parts from displaying a modal dialog box simultaneously.

3. Requests the modal focus from the arbitrator.

If its focus request is not satisfied, the method causes the Mac OS to sound
its system beep. Being unable to acquire the modal focus indicates that
another modal dialog box is already being displayed.

4. Deactivates the frontmost document window.

If its focus request is satisfied, the method calls the window-state object’s
DeactivateFrontWindows method.

5. Displays the About box.

The method uses the OpenDoc utility routine BeginUsingLibraryResources to
make the resources in its shared library available and uses the Mac OS
Toolbox routine GetNewDialog to retrieve the dialog resource.
If an error number greater than 0 was passed into this method, it sets up an
error dialog box to display.
If the dialog box resource has loaded properly, the DoDialogBox method
ensures that the cursor is an arrow, shows the dialog box window, and calls
the Mac OS Toolbox routine ModalDialog to display and handle the user’s
interaction with the dialog box.

CookbookBook : SamplePart Page 87 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

88 Handling Events

6. Cleans up after itself.

The method disposes of the dialog resource returned from the previous
GetNewDialog routine. Finally, it restores the resource chain by calling
EndUsingLibraryResources, relinquishes the modal focus to the arbitrator,
and reactivates the frontmost document window.

Listing 2-31 shows the implementation of the DoDialogBox method.

Listing 2-31 DoDialogBox method

void SamplePart::DoDialogBox(Environment* ev,
 ODFrame* frame,
 ODSShort dialogID,
 ODUShort errorNumber)

{
 SOM_Trace("SamplePart","DoDialogBox");

ODFrame* focusFrame = frame;
ODSession*session = ODGetSession(ev,fSelf);

if (focusFrame == kODNULL)
{

CListIterator fiter(fDisplayFrames);
for (CFrameProxy* proxy = (CFrameProxy*) fiter.First();

fiter.IsNotComplete(); proxy = (CFrameProxy*) fiter.Next())
{

if (proxy->FrameIsLoaded())
focusFrame = proxy->GetFrame(ev);

if (focusFrame) break;
}

}
if (session->GetArbitrator(ev)->RequestFocus(ev, gGlobals->fModalFocus,

focusFrame))
{

DialogPtr dialog;
ODSShort itemHit;
session->GetWindowState(ev)->DeactivateFrontWindows(ev);

ODSLong rfRef;
rfRef = BeginUsingLibraryResources();

CookbookBook : SamplePart Page 88 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Handling Events 89

S
am

pleP
art Tutorial

2

{
dialog = GetNewDialog(dialogID, kODNULL, (WindowPtr) -1L);
if (dialog)
{

if (errorNumber > 0)
{

Handle itemHandle;
Rect itemRect;
short itemType;
Str255 errStr;

GetIndString(errStr, kErrorStringResID, errorNumber);
GetDialogItem(dialog, kErrStrFieldID, &itemType,

&itemHandle, &itemRect);
SetDialogItemText(itemHandle, errStr);
HideDialogItem(dialog, cancel);
SetDialogDefaultItem(dialog, ok);

}
SetCursor(&ODQDGlobals.arrow);
ShowWindow(dialog);
ModalDialog(kODNULL, &itemHit);
DisposeDialog(dialog);

}
else
{

SysBeep(2);
}

}
EndUsingLibraryResources(rfRef);
session->GetArbitrator(ev)->RelinquishFocus(ev, gGlobals->fModalFocus,

focusFrame);
session->GetWindowState(ev)->ActivateFrontWindows(ev);

}
else

SysBeep(2);
}

CookbookBook : SamplePart Page 89 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

90 Activation

The View As Window Command 2

If the user chooses the View As Window command, the HandleMenuEvent
method calls the SamplePart object’s Open method, which is described in
“Opening the Part Into a Window” on page 46.

Activation 2

When the user clicks within the used shape of any frame belonging to the part,
the frame should activate itself. The frame should also activate itself when its
window opens or becomes active if the part has stored information specifying
that the frame should become active in those situations. In addition, a frame
should activate itself when the user drags and drops data on it. The frame
activates itself by acquiring the selection focus.

Methods illustrating the standard OpenDoc activation protocol are included in
this section. These method implementations are short, so their descriptions are
not shown as numbered steps.

The BeginRelinquishFocus Method 2

OpenDoc calls the BeginRelinquishFocus method when another frame requests
ownership of a focus of which the specified frame is the current owner.
Generally, a part’s response to the BeginRelinquishFocus method call is to
determine if it can safely relinquish the focus, in which case it returns kODTrue.
A part does not actually relinquish the focus in response to the
BeginRelinquishFocus call.

The SamplePart object’s implementation of BeginRelinquishFocus first
determines if the focus in question is its modal focus. If so, unless the frame
requesting the focus belongs to SamplePart itself, the method returns kODFalse.
That is, if another part wants to display a modal dialog box while SamplePart
is displaying its own, SamplePart denies the request. Otherwise, the method
returns kODTrue.

Listing 2-32 shows the implementation of the BeginRelinquishFocus method.

CookbookBook : SamplePart Page 90 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Activation 91

S
am

pleP
art Tutorial

2

Listing 2-32 BeginRelinquishFocus method

ODBoolean SamplePart::BeginRelinquishFocus(Environment* ev,
ODTypeToken focus,
ODFrame* /* ownerFrame */,
ODFrame* proposedFrame)

{
 SOM_Trace("SamplePart","BeginRelinquishFocus");

ODBoolean willRelinquish = kODTrue;
if (focus == gGlobals->fModalFocus)
{

TempODPart proposedPart = ODAcquirePart(ev,proposedFrame);
if (ODObjectsAreEqual(ev, proposedPart, fSelf) == kODFalse)

willRelinquish = kODFalse;
}
return willRelinquish;

}

The CommitRelinquishFocus Method 2

OpenDoc calls the CommitRelinquishFocus method when it is time for a frame to
actually relinquish ownership of the specified focus, completing the process
begun in response to a previous BeginRelinquishFocus method call. Generally, a
part’s response to the CommitRelinquishFocus method call is to remove any
indications of the specified frame owning the focus; for example, the method
could remove highlighting. If the focus is being transferred to a frame
belonging to a different part, the part could do further actions, such as
disabling menu items or removing a palette.

The SamplePart object’s implementation of CommitRelinquishFocus calls the
FocusLost method to do the actual work. The FocusLost method is shown in
Listing 2-34.

Listing 2-33 shows the implementation of the CommitRelinquishFocus method.

CookbookBook : SamplePart Page 91 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

92 Activation

Listing 2-33 CommitRelinquishFocus method

void SamplePart::CommitRelinquishFocus(Environment* ev,
ODTypeToken focus,
ODFrame* ownerFrame,
ODFrame* /* proposedFrame */)

{
SOM_Trace("SamplePart","CommitRelinquishFocus");

this->FocusLost(ev, focus, ownerFrame);
}

The FocusLost Method 2

The SamplePart object calls its own FocusLost method to do the actual work of
relinquishing a focus specified by the CommitRelinquishFocus method call. In
addition, OpenDoc may call the FocusLost method directly when the arbitrator
has transferred ownership of a specified focus from the specified frame to
another due to events, without benefit of the BeginRelinquishFocus and
CommitRelinquishFocus method calls.

The SamplePart object’s implementation of FocusLost acts only if the lost focus
is the selection focus. In that case, the specified frame is being deactivated, so
the method removes the indication that the frame is active, which is stored in
the frame’s CFrameInfo object.

Listing 2-34 shows the implementation of the FocusLost method.

Listing 2-34 FocusLost method

void SamplePart::FocusLost(Environment* ev,
ODTypeToken focus,
ODFrame* ownerFrame)

{
 SOM_Trace("SamplePart","FocusLost");

if (focus == gGlobals->fSelectionFocus)
{

CFrameInfo* frameInfo = (CFrameInfo*) ownerFrame->GetPartInfo(ev);

CookbookBook : SamplePart Page 92 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Activation 93

S
am

pleP
art Tutorial

2

frameInfo->SetFrameActive(kODFalse);
}

}

The AbortRelinquishFocus Method 2

OpenDoc calls the AbortRelinquishFocus method when it rescinds a previous
request (made with a BeginRelinquishFocus call) to relinquish ownership of a
focus. Generally, a part’s response to the AbortRelinquishFocus method call is to
back out of any changes it initiated in response to the previous
BeginRelinquishFocus call.

The SamplePart objects’s implementation of AbortRelinquishFocus does nothing.

Listing 2-35 shows the implementation of the AbortRelinquishFocus method.

Listing 2-35 AbortRelinquishFocus method

void SamplePart::AbortRelinquishFocus(Environment* ev,
 ODTypeToken /*focus*/,
 ODFrame* /*ownerFrame*/,
 ODFrame* /*proposedFrame*/)

{
 SOM_Trace("SamplePart","AbortRelinquishFocus");

// Some parts may have suspended some events in the BeginRelinquishFocus
// method. If so, they would resume those events here.

}

The FocusAcquired Method 2

OpenDoc calls the FocusAcquired method when the arbitrator has transferred
ownership of the specified focus to the specified frame without benefit of the
BeginRelinquishFocus and CommitRelinquishFocus method calls. Generally, a
part’s response to the FocusAcquired method call is to perform any actions
needed to indicate that the specified frame now owns the focus. For example, if
a frame acquired the selection focus, a part would highlight any selection
within the frame.

CookbookBook : SamplePart Page 93 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

94 Activation

The SamplePart object’s implementation of FocusAcquired calls the arbitrator’s
RequestFocusSet method to request the complete focus set it needs to be active.
If that action succeeds, the method calls the SamplePart object’s internal method
PartActivated, which puts the part into an active state, as shown in Listing 2-37.

Listing 2-36 shows the SamplePart object’s implementation of the FocusAcquired
method.

Listing 2-36 FocusAcquired method

void SamplePart::FocusAcquired(Environment* ev,
ODTypeToken focus,
ODFrame* ownerFrame)

{
 SOM_Trace("SamplePart","FocusAcquired");

ODArbitrator* arbitrator = ODGetSession(ev,fSelf)->GetArbitrator(ev);

if (arbitrator->RequestFocusSet(ev, gGlobals->fUIFocusSet, ownerFrame))
{

this->PartActivated(ev, ownerFrame);
}

}

The PartActivated Method 2

The SamplePart object calls its own internal method PartActivated to display
the part’s menu bar and set the active flag in the specified frame’s CFrameInfo
object to true. Before displaying the menu bar, however, the method revalidates
it, as described in “The AdjustMenus Method” on page 85.

Listing 2-37 shows the implementation of the PartActivated method.

Listing 2-37 PartActivated method

void SamplePart::PartActivated(Environment* ev,
ODFrame* frame)

{
 SOM_Trace("SamplePart","PartActivated");

CookbookBook : SamplePart Page 94 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Activation 95

S
am

pleP
art Tutorial

2

if (gGlobals->fMenuBar->IsValid(ev) == kODFalse)
{

ODReleaseObject(ev, gGlobals->fMenuBar);
gGlobals->fMenuBar =

ODGetSession(ev,fSelf)->GetWindowState(ev)->CopyBaseMenuBar(ev);
}
gGlobals->fMenuBar->Display(ev);
CFrameInfo* frameInfo = (CFrameInfo*) frame->GetPartInfo(ev);
frameInfo->SetFrameActive(kODTrue);

}

The ActivateFrame Method 2

The SamplePart object calls its own internal ActivateFrame method when a
mouse-up event occurs in an inactive frame in an active window or when the
window in which the frame is displayed is activated by the Mac OS.

The method requests the user-interface focus set (defined in the Initialize
method) and, if that request is granted, calls the PartActivated method to
display the menu bar and set the specified frame’s active flag. If the method
executes successfully, it returns kODTrue as a signal to the caller that the
specified frame is now active; otherwise, it returns kODFalse.

Listing 2-38 shows the implementation of the ActivateFrame method.

Listing 2-38 ActivateFrame method

ODBoolean SamplePart::ActivateFrame(Environment* ev,
 ODFrame* frame)

{
 SOM_Trace("SamplePart","ActivateFrame");

ODBoolean activated = kODFalse;

if (ODGetSession(ev,fSelf)->GetArbitrator(ev)
->RequestFocusSet(ev, gGlobals->fUIFocusSet, frame))

{
this->PartActivated(ev, frame);
activated = kODTrue;

CookbookBook : SamplePart Page 95 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

96 Activation

}
return activated;

}

The WindowActivating Method 2

The SamplePart object calls its own internal WindowActivating method from its
HandleEvent method when it receives an activate event from the Mac OS. The
activate event (kODEvtActivate) indicates that a window displaying the
specified frame is being either activated or deactivated, as indicated by the
Boolean parameter activating.

If the window is being activated, and if the specified frame had the selection
focus when it was deactivated, the method calls the SamplePart object’s internal
ActivateFrame method. If the window is being deactivated and the specified
frame is active, the method marks the frame’s reactivation flag true. By setting
the flag in this way, the frame can reactivate itself if the window becomes active
again later, using the previous block of this same method.

Listing 2-39 shows the implementation of the WindowActivating method.

Listing 2-39 WindowActivating method

void SamplePart::WindowActivating(Environment* ev,
 ODFrame* frame,
 ODBoolean activating)

{
 SOM_Trace("SamplePart","WindowActivating");

CFrameInfo* frameInfo = (CFrameInfo*) frame->GetPartInfo(ev);
if (activating && frameInfo->FrameNeedsReactivating())
{

this->ActivateFrame(ev, frame);
frameInfo->SetFrameReactivate(kODFalse);

}
else if (!activating && frameInfo->IsFrameActive())
{

frameInfo->SetFrameReactivate(kODTrue);
}

}

CookbookBook : SamplePart Page 96 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Persistent Storage 97

S
am

pleP
art Tutorial

2

Persistent Storage 2

Persistent storage is a way to retain data on a long-term basis, supported by a
nonvolatile device such as a hard disk. Persistent data remains stable between
computing sessions. All persistent storage in OpenDoc is represented by
storage units (ODStorageUnit), which provide a standard, cross-platform
interface for all persistent objects. Every object in OpenDoc that needs to
maintain its state between sessions is a persistent object, and each has a storage
unit. Part objects must handle their storage units in a particularly disciplined
manner because they need to satisfy many more requirements than other
persistent objects.

Storage units have any number of properties, which are like separate forks of
files, and properties have any number of values, which are separate streams of
each fork. Each value in the same property holds a different representation of
the same data; it should not hold different data. For example, every part has a
contents property (kODPropContents), and multiple representations of the
content can be stored in different values, but only content data should be
stored in the contents property.

If parts have multiple representations of their content, they must write them to
storage in order of fidelity. For example, a part’s most faithful representation of
text may be styled text, while a lower fidelity representation of the same
content would be plain ASCII text, a separate value for which would be added
later to the same property. The highest fidelity representation of part content is
its native format, specific to and usually proprietary to the part editor that
created it. Lower fidelity representations enable the part to be viewed in
documents without a full complement of part editors, to maintain portability of
documents.

To load your part’s content into memory from persistent storage, you should
basically reverse the process of writing your part. However, your part must be
able to work from an empty storage unit as well as one with stored content.
Refer to the section “Initialization” on page 39 for a description of this process.

SamplePart implements its persistent storage protocol in its Externalize,
ExternalizeStateInfo, and ExternalizeContent methods. Other methods
dealing with storage are WritePartInfo, ReadPartInfo, ClonePartInfo,
CloneInto, and Purge. In addition, the utility method SetDirty manipulates the
dirty flag, which is simply a Boolean value SamplePart uses to avoid

CookbookBook : SamplePart Page 97 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

98 Persistent Storage

redundancy: it writes the part content and notifies the draft only if the part has
been altered.

The sections that follow show the implementations of these methods, except
for the CloneInto method, which OpenDoc calls to perform data interchange.
The CloneInto method also uses the storage unit API.

The Externalize Method 2

OpenDoc calls the Externalize method whenever it is necessary to write the
part to persistent storage. Your part can also call its own Externalize method
whenever it wants to. Before returning from this method, you must write all
data that you need to accurately recreate the content and state of your part.

This method must call its parent class behavior (inherited class), because one of
its parent class methods contains implementation. This is done in the SOM
class implementation, which otherwise delegates all implementation to this
method. Refer to the som_SamplePart__Externalize method of the
som_SamplePart class in the file som_SamplePart.cpp.

The SamplePart object’s implementation of the Externalize method performs
the following actions:

1. Checks the part’s dirty flag and storage unit privileges.

If the part’s dirty flag is set to kODTrue, meaning that the part has been
changed since it was last written, and if the part’s storage unit is not
read-only, the method proceeds.

2. Retrieves a pointer to the part’s storage unit.

The method calls the GetStorageUnit method inherited from the ODPart
superclass ODPersistentObject, using the fSelf field to refer to the part
editor.

3. Ensures that the storage unit properties are appropriate.

The method calls SamplePart subroutines, internal methods
CheckAndAddProperties and CleanseContentProperty, to verify that the
properties and values are correct.

4. Writes out the part’s status information.

The method accomplishes this step by calling an internal method,
ExternalizeStateInfo.

CookbookBook : SamplePart Page 98 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Persistent Storage 99

S
am

pleP
art Tutorial

2

5. Writes out the part’s content data.

The method writes out its content data by calling another internal method,
ExternalizeContent.

6. Sets the part’s dirty flag to false.

Listing 2-40 shows the implementation of the Externalize method. The other
methods that the Externalize method calls are described in the next few
sections.

Listing 2-40 Externalize method

void SamplePart::Externalize(Environment* ev)
{
 SOM_Trace("SamplePart","Externalize");

TRY
if (fDirty && !fReadOnlyStorage)
{

ODStorageUnit* storageUnit = fSelf->GetStorageUnit(ev);
this->CheckAndAddProperties(ev, storageUnit);
this->CleanseContentProperty(ev, storageUnit);
this->ExternalizeStateInfo(ev, storageUnit, kODNULLKey, kODNULL);
this->ExternalizeContent(ev, storageUnit, kODNULLKey, kODNULL);
fDirty = kODFalse;

}
CATCH_ALL

this->DoDialogBox(ev, kODNULL, kErrorBoxID, kErrExternalizeFailed);
SetErrorCode(kODErrAlreadyNotified);
RERAISE;

ENDTRY
}

The CheckAndAddProperties Method 2

SamplePart calls its own internal CheckAndAddProperties method to verify that
the part’s storage unit has the properties it needs to run. If such properties are
not present, CheckAndAddProperties adds them.

The CheckAndAddProperties method performs the following actions:

CookbookBook : SamplePart Page 99 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

100 Persistent Storage

1. Sets up the contents property if it is not present.

After ensuring that the contents property exists, the method checks for, and
if necessary adds, the part’s kind value to the contents property. These
actions are necessary in case the storage unit is new and the part has not
been previously written to storage.

2. Sets up the preferred kind property if it is not present.

The method writes out the default part kind for the editor. The user’s chosen
kind is written out in the ExternalizeStateInfo method.

3. Sets up the part’s display frame list if it is not present.

The method checks for and, if necessary, adds the display frames property
and value.

Listing 2-41 shows the implementation of the CheckAndAddProperties method.

Listing 2-41 CheckAndAddProperties method

void SamplePart::CheckAndAddProperties(Environment* ev,
ODStorageUnit* storageUnit)

{
 SOM_Trace("SamplePart","CheckAndAddProperties");

if (!storageUnit->Exists(ev, kODPropContents, kODNULL, 0))
storageUnit->AddProperty(ev, kODPropContents);

if (!storageUnit->Exists(ev, kODPropContents, kSamplePartKind, 0))
{

storageUnit->Focus(ev, kODPropContents, kODPosUndefined,
kODNULL, 0, kODPosAll);

storageUnit->AddValue(ev, kSamplePartKind);
}
if (!storageUnit->Exists(ev, kODPropPreferredKind, kODISOStr, 0))
{

TRY
ODSetISOStrProp(ev, storageUnit, kODPropPreferredKind,

kODISOStr, kSamplePartKind);
CATCH_ALL

ODSURemoveProperty(ev, storageUnit, kODPropPreferredKind);
ENDTRY

}

CookbookBook : SamplePart Page 100 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Persistent Storage 101

S
am

pleP
art Tutorial

2

if (!storageUnit->Exists(ev, kODPropDisplayFrames, kODNULL, 0))
storageUnit->AddProperty(ev, kODPropDisplayFrames);

if (!storageUnit->Exists(ev, kODPropDisplayFrames, kODWeakStorageUnitRefs, 0))
{

storageUnit->Focus(ev, kODPropDisplayFrames, kODPosUndefined,
kODNULL, 0, kODPosAll);

storageUnit->AddValue(ev, kODWeakStorageUnitRefs);
}

}

The CleanseContentProperty Method 2

The SamplePart object calls its own internal CleanseContentProperty method
from its Externalize method. The purpose of this method is to remove any
value in the contents property that the part cannot write out accurately, such as
values added to the contents property during drag-and-drop operations.

The CleanseContentProperty method performs the following actions:

1. Focuses the storage unit to its contents property.

2. Retrieves the type of each value in the contents property.

The method uses the count of the number of values in the contents property
to iterate through all of them. It focuses the storage unit on each value and
gets its type.

3. Removes any unsupported values.

The method uses the OpenDoc utility method ODISOStrCompare to identify
unsupported values by comparing their types to the kSamplePartKind data
type. The method then deletes unsupported values using the ODStorageUnit
method Remove on the previously focused storage unit.

Listing 2-42 shows the implementation of the CleanseContentProperty method.

Listing 2-42 CleanseContentProperty method

void SamplePart::CleanseContentProperty(Environment* ev,
 ODStorageUnit* storageUnit)

{
 SOM_Trace("SamplePart","CleanseContentProperty");

CookbookBook : SamplePart Page 101 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

102 Persistent Storage

ODULong numValues;
ODULong index;

storageUnit->Focus(ev, kODPropContents, kODPosUndefined,
kODNULL, 0, kODPosAll);

numValues = storageUnit->CountValues(ev);

for (index = numValues; index >= 1; index--)
{

storageUnit->Focus(ev, kODPropContents, kODPosUndefined,
kODNULL, index, kODPosUndefined);

TempODValueType value = storageUnit->GetType(ev);
if (ODISOStrCompare(value, kSamplePartKind) != 0)

storageUnit->Remove(ev);
}

}

The ExternalizeStateInfo Method 2

The SamplePart object calls its internal ExternalizeStateInfo method from its
Externalize method when it writes the part to storage. This method writes out
state information—any information pertaining to the working of the part
editor—rather than the content. Such state information may be lost during data
interchange operations, so the part must be able to recover gracefully if the
state information is incomplete or missing.

The ExternalizeStateInfo method performs the following actions:

1. Deletes weak references to the part’s display frames.

First the method focuses on the display frames property of the part’s storage
unit, then removes and adds back the weak storage unit references
associated with that property. This action deletes previously written
persistent object references, which are not deleted by simply deleting the
content of the value.

2. Gets ID numbers for each display frame in the part’s display frame list.

The method creates a CListIterator object to visit each of the part’s display
frames, retrieving the frame ID number for each.
If, however, a draft key is passed in the key parameter, it indicates that the
part is being cloned to another draft, in which case the method creates a
weak clone of the display frame and uses the frame ID of the cloned frame

CookbookBook : SamplePart Page 102 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Persistent Storage 103

S
am

pleP
art Tutorial

2

instead. A draft key is a unique number that identifies a cloning operation
on a draft; because cloning is a multistep process, the key is needed to
preserve the integrity of each operation.

3. Writes out weak references for each of the part’s display frames.

Still within the iteration loop of the CListIterator, the method gets the weak
reference to the storage unit of each of the part’s display frames. Finally,
using a macro named StorageUnitSetValue, the method writes that value
into the display frames property of the part’s storage unit.
The StorageUnitSetValue macro, defined in the file StorUtil.h, simplifies
handling of the ODByteArray structure required by the SetValue method of
ODStorageUnit, which the macro calls.

Listing 2-43 shows the implementation of the ExternalizeStateInfo method.

Listing 2-43 ExternalizeStateInfo method

void SamplePart::ExternalizeStateInfo(Environment* ev,
 ODStorageUnit* storageUnit,
 ODDraftKey key,
 ODFrame* scopeFrame)

{
 SOM_Trace("SamplePart","ExternalizeStateInfo");

ODStorageUnitRef weakRef;
ODID frameID;
ODID scopeFrameID =

(scopeFrame ? scopeFrame->GetID(ev) : kODNULLID);
ODDraft* fromDraft = ODGetDraft(ev,fSelf);

storageUnit->Focus(ev, kODPropDisplayFrames, kODPosUndefined,
kODWeakStorageUnitRefs, 0, kODPosUndefined);

storageUnit->Remove(ev);
storageUnit->AddValue(ev, kODWeakStorageUnitRefs);

CListIterator fiter(fDisplayFrames);
for (CFrameProxy* proxy = (CFrameProxy*) fiter.First();

fiter.IsNotComplete(); proxy = (CFrameProxy*) fiter.Next())
{

frameID = proxy->GetID();

CookbookBook : SamplePart Page 103 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

104 Persistent Storage

if (key)
frameID = fromDraft->WeakClone(ev, key, frameID, kODNULLID, scopeFrameID);

storageUnit->GetWeakStorageUnitRef(ev, frameID, weakRef);
TRY

StorageUnitSetValue(storageUnit, ev, kODStorageUnitRefSize,
(ODPtr)&weakRef);

CATCH_ALL
// Consume the exception

ENDTRY
}

}

The ExternalizeContent Method 2

The SamplePart object’s ExternalizeContent method is empty, although any
implementation would contain a statement to focus the part’s storage unit on
its contents property (kODPropContents). Every part must have a property of
this type in which to store its content data. OpenDoc uses the contents property
to match parts to their correct part editors. Finally, the method would also
write the part’s content data out to its storage unit in an appropriate manner.
SamplePart has no intrinsic content so ExternalizeContent does nothing.

The CloneInto Method 2

OpenDoc calls the CloneInto method during data interchange operations, that
is, when a part is copied to the Clipboard, to a drag-and-drop object, or to a
link-source object. The CloneInto method is inherited from the
ODPersistentObject class. Generally, a part should respond to the CloneInto
method call by writing its own data to the specified destination storage unit
and cloning any objects to which it has strong persistent references and which
are within the scope of the frame passed in the initiatingFrame parameter.

Note
The scope of a frame includes the content of frames
embedded within it but excludes other content of the parts
belonging to those embedded frames. Scope and other
concepts of cloning are explained in the OpenDoc
Programmer’s Guide for the Mac OS. ◆

CookbookBook : SamplePart Page 104 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Persistent Storage 105

S
am

pleP
art Tutorial

2

The SamplePart object’s implementation of the CloneInto method writes only its
own data, state information, and content, to the destination storage unit.
Because SamplePart does not support embedding of other parts within itself, it
has no need to clone any other objects.

SamplePart does the actual work of externalizing its data in the internal
methods CheckAndAddProperties (Listing 2-41 on page 100),
ExternalizeStateInfo (Listing 2-43 on page 103), and ExternalizeContent (“The
ExternalizeContent Method” on page 104).

Listing 2-44 shows the implementation of the CloneInto method.

Listing 2-44 CloneInto method

void SamplePart::CloneInto(Environment* ev,
ODDraftKey key,
ODStorageUnit* destinationSU,
ODFrame* initiatingFrame)

{
 SOM_Trace("SamplePart","CloneInto");

if (destinationSU->Exists(ev, kODPropContents, kSamplePartKind, 0) == kODFalse)
{

this->CheckAndAddProperties(ev, destinationSU);
this->ExternalizeStateInfo(ev, destinationSU, key, initiatingFrame);
this->ExternalizeContent(ev, destinationSU, key, initiatingFrame);

}
}

The InternalizeContent Method 2

The SamplePart object’s internal InternalizeContent method does nothing,
because SamplePart has no intrinsic content.

Generally speaking, for parts having content, a method such as this would
focus the part’s storage unit on the kODPropContents property, then read the
stored data values. A reference to the storage unit is passed by OpenDoc to the
part’s InitPartFromStorage method (which in turn calls this method).

CookbookBook : SamplePart Page 105 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

106 Persistent Storage

The InternalizeStateInfo Method 2

The SamplePart object calls its own internal InternalizeStateInfo method from
its InitPartFromStorage method when it reads the part in from its persistent
storage unit. This method reads in state information—any information
pertaining to the working of the part editor—rather than the content.
Generally, state information enables a part to present the same setup or
configuration to the user as it had when last written out to storage.

The InternalizeStateInfo method reads from storage a list of weak references
to its display frames, previously written out by the ExternalizeStateInfo
method. The method validates each reference; if the reference is valid, the
method adds it to its display frame list using lazy internalization. That is, the
method uses a frame proxy object, adding the proxy pointer to its display
frame list. The part reads in the actual display frame object only when it is
actually needed.

Listing 2-45 shows the implementation of the InternalizeStateInfo method.

Listing 2-45 InternalizeStateInfo method

void SamplePart::InternalizeStateInfo(Environment* ev,
 ODStorageUnit* storageUnit)

{
 SOM_Trace("SamplePart","InternalizeStateInfo");

ODStorageUnitRef weakRef;
ODULong size;

if (storageUnit->Exists(ev, kODPropDisplayFrames, kODWeakStorageUnitRefs, 0))
{

storageUnit->Focus(ev, kODPropDisplayFrames, kODPosUndefined,
kODWeakStorageUnitRefs, 0, kODPosUndefined);

size = storageUnit->GetSize(ev);
storageUnit->SetOffset(ev, 0);

for (ODULong offset = 0; offset < size; offset += kODStorageUnitRefSize)
{

TRY
StorageUnitGetValue(storageUnit, ev, kODStorageUnitRefSize,

(ODPtr)&weakRef);

CookbookBook : SamplePart Page 106 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Persistent Storage 107

S
am

pleP
art Tutorial

2

if (storageUnit->IsValidStorageUnitRef(ev, weakRef))
{

ODID frameID = storageUnit->GetIDFromStorageUnitRef(ev, weakRef);
CFrameProxy* proxy = new CFrameProxy;
proxy->InitFrameProxy(frameID, ODGetDraft(ev,storageUnit));
fDisplayFrames->Add(proxy);

}
CATCH_ALL

// Consume exception
ENDTRY

}
}

}

The ReadPartInfo Method 2

Every part is displayed in at least one frame represented by an object of class
ODFrame. Frame objects have a part info field in which a part editor can store
information describing how it should display its part’s data in that frame.
When you write your part to storage, OpenDoc calls your part’s WritePartInfo
method, and when you load your part into memory, OpenDoc calls its
ReadPartInfo method. Generally, a part should respond to the WritePartInfo
method call by writing enough information to persistent storage to be able to
reconstruct each frame’s part info field, and it should perform that
reconstruction in its ReadPartInfo implementation. The WritePartInfo method
is described in the section following this one.

The SamplePart object stores a pointer to an object of a C++ helper class named
CFrameInfo in its part info field.

The ReadPartInfo method performs the following actions:

1. Instantiates a frame info object.

The CFrameInfo constructor initializes the object’s internal data fields.

2. Reads the frame info object into memory.

The InitFromStorage method reads the CFrameInfo object, containing the
frame’s status information, from its storage unit.

3. Returns a pointer to the frame info object.

CookbookBook : SamplePart Page 107 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

108 Persistent Storage

If the CFrameInfo object’s InitFromStorage method fails, the method deletes the
object and propagates the exception to the calling method.

Listing 2-46 shows the implementation of the SamplePart object’s ReadPartInfo
method, the CFrameInfo constructor (defined inline), and the CFrameInfo object’s
InitFromStorage method.

Listing 2-46 ReadPartInfo, CFrameInfo constructor, and
CFrameInfo::InitFromStorage methods

ODInfoType SamplePart::ReadPartInfo(Environment* ev,
 ODFrame* frame,
 ODStorageUnitView* storageUnitView)

{
 SOM_Trace("SamplePart","ReadPartInfo");

CFrameInfo* frameInfo = new CFrameInfo;

TRY
frameInfo->InitFromStorage(ev, storageUnitView);

CATCH_ALL
ODDeleteObject(frameInfo);
RERAISE;

ENDTRY

return (ODInfoType)frameInfo;
}

CFrameInfo::CFrameInfo()
{

fFrameActive = kODFalse;
fFrameReactivate = kODFalse;
fShouldDisposeWindow = kODFalse;
fActiveFacet = kODNULL;
fSourceFrame = kODNULL;
fDependentFrame = kODNULL;
fPartWindow = kODNULL;

}

CookbookBook : SamplePart Page 108 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Persistent Storage 109

S
am

pleP
art Tutorial

2

void CFrameInfo::InitFromStorage(Environment* ev, ODStorageUnitView* storageUnitView)
{

ODStorageUnit* storageUnit = storageUnitView->GetStorageUnit(ev);

if (storageUnit->Exists(ev, kODNULL, kSamplePartInfo, 0))
{

TRY
storageUnit->Focus(ev, kODNULL, kODPosSame,

kSamplePartInfo, 0 , kODPosUndefined);
ODStorageUnitRef weakRef = {0,0,0,0};
StorageUnitGetValue(storageUnit, ev, sizeof(ODStorageUnitRef),

(ODPtr)&weakRef);
if (storageUnit->IsValidStorageUnitRef(ev, weakRef))
{

ODID frameID = storageUnit->GetIDFromStorageUnitRef(ev, weakRef);
CFrameProxy* proxy = new CFrameProxy;
proxy->InitFrameProxy(frameID, ODGetDraft(ev,storageUnit));
fSourceFrame = proxy;

}
CATCH_ALL

ODDeleteObject(fSourceFrame);
fSourceFrame = kODNULL;

ENDTRY

TRY
ODStorageUnitRef weakRef = {0,0,0,0};
StorageUnitGetValue(storageUnit, ev, sizeof(ODStorageUnitRef),

(ODPtr)&weakRef);

if (storageUnit->IsValidStorageUnitRef(ev, weakRef))
{

ODID frameID = storageUnit->GetIDFromStorageUnitRef(ev, weakRef);
CFrameProxy* proxy = new CFrameProxy;
proxy->InitFrameProxy(frameID, ODGetDraft(ev,storageUnit));
fDependentFrame = proxy;

}
CATCH_ALL

ODDeleteObject(fDependentFrame);
fDependentFrame = kODNULL;

CookbookBook : SamplePart Page 109 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

110 Persistent Storage

ENDTRY
}

}

The WritePartInfo Method 2

OpenDoc calls a part’s WritePartInfo method for each of its display frames
whenever the document is saved.

The SamplePart object’s implementation of the WritePartInfo method calls the
CFrameInfo object’s Externalize method, which first gets a reference to the
storage unit of the storage-unit view object passed with the call to
WritePartInfo. The Externalize method then calls the CFrameInfo object’s
CleanseFrameInfoProperty method, which iterates through the value types in
the storage unit and removes any that are not supported by SamplePart.
Finally, Externalize calls the CFrameInfo object’s ExternalizeFrameInfo method
to actually write out the frame’s part info data.

The CFrameInfo object’s ExternalizeFrameInfo method works much the same as
the SamplePart object’s ExternalizeStateInfo method. That is, the method
removes, then adds back, the value containing weak references in the storage
unit. Then, the method writes weak references to its source frame, if any, and
its dependent frame, if any. In both cases, if a draft key exists, the method
creates a weak clone of the display frame and writes out the weak reference to
the storage unit. The SamplePart object’s ExternalizeStateInfo method is
described in “The ExternalizeStateInfo Method” on page 102.

Listing 2-47 shows the implementation of the SamplePart object’s WritePartInfo
method, the CFrameInfo object’s Externalize method, and the CFrameInfo
object’s ExternalizeFrameInfo method.

Listing 2-47 WritePartInfo, CFrameInfo::Externalize, and
CFrameInfo::ExternalizeFrameInfo methods

void SamplePart::WritePartInfo(Environment* ev,
 ODInfoType partInfo,

ODStorageUnitView* storageUnitView)
{
 SOM_Trace("SamplePart","WritePartInfo");

CookbookBook : SamplePart Page 110 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Persistent Storage 111

S
am

pleP
art Tutorial

2

((CFrameInfo*) partInfo)->Externalize(ev, storageUnitView);
}

void CFrameInfo::Externalize(Environment* ev, ODStorageUnitView* storageUnitView)
{

ODStorageUnit* storageUnit = storageUnitView->GetStorageUnit(ev);
this->CleanseFrameInfoProperty(ev, storageUnit);
this->ExternalizeFrameInfo(ev, storageUnit, kODNULLKey, kODNULL);

}

void CFrameInfo::ExternalizeFrameInfo(Environment* ev, ODStorageUnit* storageUnit,
ODDraftKey key, ODFrame* scopeFrame)

{
if (storageUnit->Exists(ev, kODNULL, kSamplePartInfo, 0))
{

storageUnit->Focus(ev, kODNULL, kODPosSame, kSamplePartInfo, 0,
kODPosUndefined);

storageUnit->Remove(ev);
}
storageUnit->AddValue(ev, kSamplePartInfo);

{
ODStorageUnitRef weakRef = {0,0,0,0};

if (fSourceFrame)
{

ODID frameID = fSourceFrame->GetID();
ODID scopeFrameID = (scopeFrame ? scopeFrame->GetID(ev) : kODNULLID);
ODDraft* fromDraft = fSourceFrame->GetDraft();

if (key)
frameID = fromDraft->WeakClone(ev, key, frameID, kODNULLID,

scopeFrameID);
storageUnit->GetWeakStorageUnitRef(ev, frameID, weakRef);

}
StorageUnitSetValue(storageUnit, ev, sizeof(ODStorageUnitRef),

(ODPtr)&weakRef);
}
{

ODStorageUnitRef weakRef = {0,0,0,0};

CookbookBook : SamplePart Page 111 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

112 Persistent Storage

if (fDependentFrame)
{

ODID frameID = fDependentFrame->GetID();
ODID scopeFrameID = (scopeFrame ? scopeFrame->GetID(ev) : kODNULLID);
ODDraft* fromDraft = fDependentFrame->GetDraft();

if (key)
frameID = fromDraft->WeakClone(ev, key, frameID, kODNULLID,

scopeFrameID);
storageUnit->GetWeakStorageUnitRef(ev, frameID, weakRef);

}
StorageUnitSetValue(storageUnit, ev, sizeof(ODStorageUnitRef),

(ODPtr)&weakRef);
}

}

The ClonePartInfo Method 2

OpenDoc calls a part’s ClonePartInfo method when any of its display frames is
cloned during data transfer. Generally, a part editor should respond to the
ClonePartInfo method call by writing out the frame’s part info data, including
any additional objects to which the part has strong persistent references and
which are within the scope of the specified frame.

The SamplePart object’s implementation of ClonePartInfo calls the CloneInto
method of the CFrameInfo helper object holding the specified frame’s part info
data. The CFrameInfo implementation of CloneInto gets the storage unit,
prefocused to a property but not to a value, and writes out the frame’s part info
data by calling the CFrameInfo object’s ExternalizeFrameInfo method, which is
shown in Listing 2-47 on page 110.

Listing 2-48 shows the implementation of the SamplePart object’s ClonePartInfo
method and the CFrameInfo object’s CloneInto method.

Listing 2-48 ClonePartInfo and CFrameInfo::CloneInto methods

void SamplePart::ClonePartInfo(Environment* ev,
ODDraftKey key,

 ODInfoType partInfo,

CookbookBook : SamplePart Page 112 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Persistent Storage 113

S
am

pleP
art Tutorial

2

ODStorageUnitView* storageUnitView,
ODFrame* scopeFrame)

{
 SOM_Trace("SamplePart","ClonePartInfo");

((CFrameInfo*) partInfo)->CloneInto(ev, key, storageUnitView, scopeFrame);
}

void CFrameInfo::CloneInto(Environment *ev, ODDraftKey key,
ODStorageUnitView* storageUnitView, ODFrame* scopeFrame)

{
ODStorageUnit* storageUnit = storageUnitView->GetStorageUnit(ev);

if (storageUnit->Exists(ev, kODNULL, kSamplePartInfo, 0) == kODFalse)
{

this->ExternalizeFrameInfo(ev, storageUnit, key, scopeFrame);
}

}

The Release Method 2

A part’s Release method is called by an object, such as another part editor,
whenever it releases a reference to this part. The Release method is inherited
from the ODRefCntObject class, and the inherited implementation does the
actual reference-count management. The som_SamplePart object’s Release
method calls the inherited method before it calls the SamplePart object’s Release
method described in this section (see also “SamplePart System Object Model
Interface” on page 32).

The SamplePart object’s implementation of the Release method releases the
part-wrapper object to which the fSelf field points, if its reference count falls to
0.

Listing 2-49 shows the implementation of the Release method.

Listing 2-49 The Release method

void SamplePart::Release(Environment* ev)
{
 SOM_Trace("SamplePart","Release");

CookbookBook : SamplePart Page 113 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

114 Persistent Storage

if (fSelf->GetRefCount(ev) == 0)
ODGetDraft(ev,fSelf)->ReleasePart(ev,fSelf);

}

The ReleaseAll Method 2

OpenDoc calls a part’s ReleaseAll method when the part object is about to be
deleted by its draft. At this point, the part must release all the references it has
acquired to other reference-counted objects. Otherwise, it will cause an invalid
reference count error at some later time. This method is inherited from the
ODPersistentObject class. The som_SamplePart object’s ReleaseAll method calls
the inherited method after it calls the SamplePart object’s ReleaseAll method
described in this section (see also “SamplePart System Object Model Interface”
on page 32).

The SamplePart object’s implementation of the ReleaseAll method performs the
following actions:

1. Cleans up the SamplePart global variables.

The ReleaseAll method first ensures that the global variables are no longer
needed. The global variables are shared among all instances of the
SamplePart class that are currently running, and each instance increments a
usage count accordingly. The method decrements the usage count. If the
usage count reaches 0, the method releases the menu bar object, deletes the
user interface focus set object, and deletes the global variables structure.

2. Cleans up the part’s display frame list.

The ReleaseAll method first ensures that the part’s display frame list is not
null. SamplePart maintains proxy display frame objects in its list to support
lazy internalization: the actual frames are not read into memory until they
are needed. The method iterates through the display frame list, removing
the pointer for each proxy from the list and deleting the proxy object. Then
the method deletes the frame list object itself.

The ODDeleteObject and ODReleaseObject utility macros, used in the ReleaseAll
method to delete objects and release reference-counted objects, are defined in
the ODUtils.h file.

Listing 2-50 shows the implementation of the ReleaseAll method.

CookbookBook : SamplePart Page 114 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Persistent Storage 115

S
am

pleP
art Tutorial

2

Listing 2-50 The ReleaseAll method

void SamplePart::ReleaseAll(Environment* ev)
{
 SOM_Trace("SamplePart","ReleaseAll");

TRY
if (--gGlobalsUsageCount == 0)
{

ODReleaseObject(ev, gGlobals->fMenuBar);
ODDeleteObject(gGlobals->fUIFocusSet);
ODDeleteObject(gGlobals);

}

if (fDisplayFrames)
{

CListIterator fiter(fDisplayFrames);
for (CFrameProxy* proxy = (CFrameProxy*) fiter.First();

fiter.IsNotComplete(); proxy = (CFrameProxy*) fiter.Next())
{

fiter.RemoveCurrent();
delete proxy;

}
ODDeleteObject(fDisplayFrames);

}
CATCH_ALL

RERAISE;
ENDTRY

}

The Purge Method 2

When OpenDoc detects a possible shortage of memory, it may call a part’s
Purge method. The part should free as much memory as possible. OpenDoc
passes in the requested number of bytes to free with the method call.
Obviously, parts should not free any resources they need to keep running.

CookbookBook : SamplePart Page 115 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

116 Persistent Storage

The SamplePart object’s implementation of the Purge method performs the
following actions:

1. Checks the view type of each of its display frames.

The method checks first to see if its internal list of display frames has been
created. If not, there is no storage to free, so the method returns. Otherwise,
the method iterates through all the frame proxy objects in its display frames
list. If the frame associated with the proxy has not been loaded into memory.
the method ignores it.

2. Releases the unused thumbnail resource.

The method ensures that no frame has a view type of thumbnail, as
determined in its previous iteration of its frame list, and that the thumbnail
resource was previously read into memory. If these conditions prevail, the
method increments its count of freed bytes by the size of the resource,
releases the resource, and sets to null its global variable that points to the
resource.

3. Returns the cumulative count of the number of bytes freed.

Listing 2-51 shows the implementation of the Purge method.

Listing 2-51 Purge method

ODSize SamplePart::Purge(Environment* ev,
 ODSize /*size*/)

{
 SOM_Trace("SamplePart","Purge");

if (fDisplayFrames == kODNULL) return 0;

ODSize bytesFreed = 0;
ODBoolean usingThumbnail = kODFalse;

CListIterator fiter(fDisplayFrames);
for (CFrameProxy* proxy = (CFrameProxy*) fiter.First();

fiter.IsNotComplete(); proxy = (CFrameProxy*) fiter.Next())
{

if (proxy->FrameIsLoaded())
{

ODTypeTokenframeView = proxy->GetFrame(ev)->GetViewType(ev);

CookbookBook : SamplePart Page 116 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Persistent Storage 117

S
am

pleP
art Tutorial

2

if (frameView == gGlobals->fThumbnailView)
usingThumbnail = kODTrue;

proxy->Purge(ev);
}

}
if (!usingThumbnail && (gGlobals->fThumbnail != kODNULL))
{

bytesFreed += (ODSize) ODGetHandleSize(gGlobals->fThumbnail);
ReleaseResource(gGlobals->fThumbnail);
gGlobals->fThumbnail = kODNULL;

}
return bytesFreed;

}

The SetDirty Method 2

The SamplePart object’s internal SetDirty method sets its dirty flag to true,
indicating that part’s data has been changed by the user. The part editor calls
its own SetDirty method whenever it changes its content.

The SetDirty method performs the following actions:

1. Checks the dirty flag and write status.

The implementation is protected by its own flag, the internal variable fDirty.
If the flag is already true, or if the part’s draft is read-only, the method body
doesn’t execute. Otherwise the method performs the subsequent steps.

2. Sets the dirty flag to true.

3. Notifies the draft that its content has changed from its previous version.

The method gets access to the draft through the ODGetDraft utility method
and calls its SetChangedFromPrev method.

Listing 2-52 shows the implementation of the SetDirty method.

Listing 2-52 SetDirty method

void SamplePart::SetDirty(Environment* ev)
{
 SOM_Trace("SamplePart","SetDirty");

CookbookBook : SamplePart Page 117 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

118 Defining Types and Constants

if (!fDirty && !fReadOnlyStorage)
{

fDirty = kODTrue;
ODGetDraft(ev,fSelf)->SetChangedFromPrev(ev);

}
}

Defining Types and Constants 2

SamplePart uses several files containing definitions of types and constants,
which are included in the file SamplePart.r. The files Types.r and SysTypes.r
contain resource type and constant definitions for the Mac OS. The file
CodeFragmentTypes.r contains the code fragment resource ('cfrg') definition,
which enables the Code Fragment Manager (on which the Mac OS
implementation of SOM is built) to find the shared libraries in the part editor
file. The file ODTypes.r contains OpenDoc’s 'nmap' type definition, the
name-mapping resource template. SamplePart resources are described in
“Defining Resources” on page 122.

The file StdDefs.h contains constant definitions for OpenDoc standard part
kinds and categories, and various other resource types, icon sizes, and so forth.
The file SamplePartDef.h defines constants specifically for SamplePart, as
shown in Listing 2-54. The file SamplePartVers.h defines SamplePart’s version
resources, as described in the section “Version Numbers” on page 124.

Listing 2-53 shows the compiler include statements for these definition files.

Listing 2-53 SamplePart types and constant definitions includes

#define SystemSevenOrBetter 1 // so have the extended types
#define SystemSevenOrLater 1 // Types.r uses this variable

// -- MPW Rez includes --

#include "Types.r"
#include "SysTypes.r"
#include "CodeFragmentTypes.r"

CookbookBook : SamplePart Page 118 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Defining Types and Constants 119

S
am

pleP
art Tutorial

2

// -- OpenDoc includes --

#ifndef __ODTYPES_R__
#include "ODTypes.r"
#endif

#ifndef SOM_Module_OpenDoc_StdDefs_defined
#include "StdDefs.r"
#endif

// -- SamplePart includes --

#ifndef _SAMPLEPARTDEF_
#include "SamplePartDef.h"
#endif

#ifndef _SAMPLEPARTVERS_
#include "SamplePartVers.h"
#endif

Listing 2-54 shows constants defined specifically for SamplePart in the file
SamplePartDef.h. The use of most of these constants is explained in subsequent
sections of this chapter, and some of the definitions are repeated there to make
the explanations clearer. In the following listing, the designation (CH) in
comments indicates symbols that probably need redefinition for your own part
editor.

Listing 2-54 SamplePart constant definitions

// Class / editor ID (CH)
#define kPartClassName "som_SamplePart"
#define kSamplePartID "SampleCode::"kPartClassName

// Editor user string (CH)
#define kSamplePartEditorUserString "SamplePart 1.0"

// Kind (CH)
#define kSamplePartKind kODISOPrefix "Apple:Kind:SamplePart"

// Kind user string (CH)

CookbookBook : SamplePart Page 119 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

120 Defining Types and Constants

#define kSamplePartKindUserString "SamplePart"

// Category (CH)
#define kSamplePartCategory kODISOPrefix "Apple:Category:Sample Code"

// Category user string (CH)
#define kSamplePartCategoryUserString Sample Code"

// SamplePart OSTypes (CH)
#define kSamplePartEditorOSType 'SPED'
#define kSamplePartViewerOSType 'SPVW'
#define kSamplePartDocumentOSType 'SPDC'
#define kSamplePartStationeryOSType 'sPDC'

// ISO strings (CH)
#define kMainPresentation kODISOPrefix "SamplePart:Presentation:Main"
#define kSamplePartInfo kODISOPrefix "SamplePart:Display Frame Info"

// SamplePart defines
#define kBaseResourceID 20001

// NMAP Resource IDs
#define kKindCategoryMapId kBaseResourceID+1
#define kEditorKindMapId kBaseResourceID+2
#define kEditorUserStringMapId kBaseResourceID+3
#define kKindUserStringMapId kBaseResourceID+4
#define kCategoryUserStringMapId kBaseResourceID+5
#define kOldMacOSTypeMapId kBaseResourceID+6

// Text items
#define kMenuStringResID kBaseResourceID
#define kAboutTextID 1
#define kDefaultContent1ID 2
#define kDefaultContent2ID 3

// Error messages
#define kErrorStringResID kMenuStringResID+1
#define kErrStrFieldID 3
#define kErrCantInitializePart 1
#define kErrCantOpenDocWindow 2
#define kErrCantOpenPartWindow 3

CookbookBook : SamplePart Page 120 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Defining Types and Constants 121

S
am

pleP
art Tutorial

2

#define kErrRemoveFrame 4
#define kErrWindowGone 5
#define kErrExternalizeFailed 6

// Bundles/FREFs
#define kDocumentBundle kBaseResourceID
#define kEditorBundle kBaseResourceID+1
#define kViewerBundle kBaseResourceID+2
#define kDocumentFREF kBaseResourceID
#define kStationeryFREF kBaseResourceID+1
#define kEditorFREF kBaseResourceID+2
#define kViewerFREF kBaseResourceID+3

// Icons
#define kLargeIcons 1
#define kSmallIcons 2
#define kDocumentIcons kBaseResourceID
#define kStationeryIcons kBaseResourceID+1
#define kEditorIcons kBaseResourceID+2
#define kViewerIcons kBaseResourceID+3

// Pictures
#define kEditorIconPicture kBaseResourceID
#define kThumbnailPicture kBaseResourceID+1

// Dialog boxes & windows
#define kAboutBoxID kBaseResourceID
#define kErrorBoxID kBaseResourceID+1
#define kMacWindowTitleBarHeight 20
#define kALittleNudge 4
#define kMinVertVisPortion 10
#define kMinHorzVisPortion 16

// Display frames
#define kFrameRemoved 1
#define kFrameClosed 0

// Geometry
#define kMaxImagingResolution 72 // dpi

CookbookBook : SamplePart Page 121 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

122 Defining Resources

Defining Resources 2

SamplePart uses Mac OS resources to define and store various types of
structured data, as described in this section. Most of SamplePart’s resources are
defined in the file SamplePart.r. Other resource data used in SamplePart, such
as 'PICT' data, is contained in the file SamplePartOtherResources.rsrc.
SamplePart.r and SamplePartOtherResources.rsrc are compiled to produce the
resource objects files SamplePart.PPC.rsrc (for the PowerPC version) and
SamplePart.68k.rsrc (for the 68K version).

OpenDoc-OLE Interoperability 2

OpenDoc provides interoperability with OLE (Object Linking and Embedding)
technology, enabling OLE servers to be embedded in OpenDoc container parts
and OpenDoc parts to be embedded in OLE applications. For your part to be
embedded directly in an OLE application, it must have its own OLE class
identifier (CLSID), an alphanumeric string which uniquely identifies your part
to the OLE runtime system. On the Mac OS platform, parts maintain their
CLSID in a resource of type 'olcr'.

To obtain an OLE class identifier, you must contact Microsoft Corporation. To
do so, log on to CompuServe, enter GO "WINOBJ" and post a public or private
message requesting the number of class identifiers you need. Include your
company’s name, address, and telephone number. If you don’t specify a
number, Microsoft allocates a block of 250 OLE class identifiers for each request.

In your 'olcr' resource, you must represent your CLSID as a string delimited
by braces and double quotation marks. Listing 2-55 shows SamplePart’s OLE
interoperability resource definition.

Listing 2-55 SamplePart OLE interoperability resource

resource 'olcr' (0, "OLE Class ID")
{
"{80C11F40-7503-8576-00D01113F11}";
};

CookbookBook : SamplePart Page 122 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Defining Resources 123

S
am

pleP
art Tutorial

2

Menu IDs 2

Menu IDs on the Mac OS are positive short integers, and hierarchical menu IDs
must be in the 1-byte range. (Negative values are reserved.) Menu IDs must be
the same as the menu resource ID, if the menu is resource based.

Because all menus installed in the Mac OS menu bar must have unique IDs,
there is potential conflict among the OpenDoc document shell and container
applications, shell plug-ins and services, and the currently active part.
Therefore, you should use the following ranges for regular menus:

Document shell and container applications 255–16383
Plug-ins and services 16384–20000
Part editors 20001–32767

You should use the following ranges for hierarchical menus:

Document shell and container applications 0–127
Plug-ins and services 128–193
Part editors 194–254

Since there may be multiple plug-ins or services, they must assign their IDs
dynamically. That is, a plug-in should choose an ID within the specified range
and look for a menu with that ID. If one is found, the plug-in should add 1 to
the ID and try again.

Bundle Resources 2

SamplePart includes certain resource definitions for its own purposes, such as
icons for its icon views. The Finder uses bundle resources (type 'BNDL') to
associate conventional applications and documents with each other and with
the icons it displays to the user for them. The bundle resource contains the
application’s four-letter signature and the resource ID numbers of its signature,
icon list, and file reference resources. Refer to Inside Macintosh: Macintosh
Toolbox Essentials for more information about bundle resources and the Finder
interface.

In OpenDoc, a part editor has two or more bundle resources; SamplePart has
three: editor, viewer, and document. Bundle resources associate part editor and
viewer icon families (specified according to type) with the shared library file
containing their executable code (specified according to signature). Whereas
conventional Mac OS applications have a type of 'APPL', part editors and
viewers have the type 'shlb'. SamplePart’s editor signature is 'SPED' and its
viewer signature is 'SPVW'.

CookbookBook : SamplePart Page 123 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

124 Defining Resources

OpenDoc parts are not owned by their part editors in the way conventional
Mac OS documents are owned by their creator applications. Rather, all
OpenDoc documents have a creator type of 'odtm'. They are associated with
their Finder icons by means of their type, which can be unique because it does
not need to indicate the type of data contained by the document. You could use
the same four-letter code to represent your part editor and documents.
SamplePart documents, however, use the type 'SPDC'.

Stationery documents are very important in OpenDoc because users typically
see and manipulate stationery—double-clicking or dragging a stationery icon
in the Finder—to create an instance of a part. Stationery documents differ from
regular documents only in the Finder Info bit that is set for stationery; they
share the same file type and creator. You must include a stationery icon family
in your document bundle resource with a file type identical to your document
file type except that its first letter is a lowercase s (regardless of the first letter of
the document file type). The Finder then makes the proper association between
the stationery icons and documents with their stationery bit set. So,
SamplePart’s stationery icons are associated with a type of 'sPDC'.

Editor, viewer, and document signatures should be registered with Apple
Developer Technical Support. SamplePart maintains these definitions in the file
SamplePartOtherResources.rsrc. You can view the resources themselves using a
resource editor such as ResEdit.

Version Numbers 2

Parts need to maintain three separate sets of version numbers that are
necessary to the part’s correct operation: CFM (Code Fragment Manager)
version numbers, Finder file version numbers, and SOM class version
numbers. These version numbers should be synchronized.

All of these types of version numbers include one major and one minor
number, separated by a decimal point. In addition, CFM and Finder version
numbers include a second minor version number called the fix version. For
example, in the version number 2.3.1, the major portion is 2, and the minor
portion is 3.1. Major version numbers have a range of 0–99; both minor version
numbers have a range of 0–9. (The Code Fragment Manager and the Finder
also provide for development stage designations. You can ignore these
designations, but be aware that the Code Fragment Manager uses them if
provided.)

CookbookBook : SamplePart Page 124 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Defining Resources 125

S
am

pleP
art Tutorial

2

Version numbers are maintained in binary-coded-decimal format. For example,
using hexadecimal notation to represent the binary, the version number 2.3.1 is
represented as 0x0231. Note that the 3 and the 1 are both in the same byte.

CFM version numbers enable the Code Fragment Manager of the Mac OS to
find and load the correct version of the part editor’s shared library. CFM
version numbers are defined in the part’s 'cfrg' resource, shown in
Listing 2-58 on page 128. The Finder version numbers are displayed by the
Finder in response to the Get Info menu command. SOM version numbers are
used in the SOM Interface Definition Language (.idl) file; they ensure
compatibility between the definition and implementation of SOM classes.

SamplePart includes a file, SamplePartVers.h, that contains a set of compiler
definitions to generate all three version numbers correctly. This file is included
in SamplePart.r and som_SamplePart.idl. In addition, you must specify the
correct version numbers to the linker in your makefile (for MPW) or project
preferences (for integrated environments).

CFM version numbers are explained in Inside Macintosh: PowerPC System
Software. Finder version numbers are explained in Inside Macintosh: Macintosh
Toolbox Essentials. SOM version numbers are discussed in the SOMobjects
Developer Toolkit Users Guide from IBM.

Listing 2-56 shows SamplePart’s version number constant definitions. These
constants are used in the file SamplePart.r, as shown in Listing 2-57, which
shows SamplePart’s Finder version resource definitions, and Listing 2-58,
which shows SamplePart’s code fragment resource definition. The version
number constants are used again in the file som_SamplePart.idl, which is
described in Appendix B, “System Object Model.”

Listing 2-56 SamplePart version number definitions

// Development stages
#define dsUndefined 0x00
#define dsPreAlpha 0x20
#define dsAlpha 0x40
#define dsBeta 0x60
#define dsFinal 0x80
#define dsReleased dsFinal
#define dsGoldenMaster dsFinal

CookbookBook : SamplePart Page 125 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

126 Defining Resources

// • Change often •

// Current major version (version = major.minor.fix)
#define currentMajorVersion 1

// Current minor version (version = major.minor.fix)
#define currentMinorVersion 0

// Current fix version (version = major.minor.fix)
#define currentFixVersion 0

// Development stage
#define developmentStage dsFinal

// Prerelease number
#define preReleaseNumber 0

// Short version string
#define shortVersionStr "1.0"

// • Change seldom •

// Old compatibility definition major version (for CFM only)
#define oldCompDefnMajorVersion 0

// Old compatibility definition minor version (for CFM only)
#define oldCompDefnMinorVersion 0

// Old compatibility definition fix version (for CFM only)
#define oldCompDefnFixVersion 0

// Prerelease number
#define oldCompDefnPreRelNumber 0

// Development stage
#define oldCompDefnDevStage dsUndefined

CookbookBook : SamplePart Page 126 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Defining Resources 127

S
am

pleP
art Tutorial

2

// • Generated version numbers •
// (Don't change!!)

#define currentVersion (currentMajorVersion<<24)+(currentMinorVersion<<20) \
+(currentFixVersion<<16)+(developmentStage<<8)+preReleaseNumber

#define compatibleVersion (oldCompDefnMajorVersion<<24)+(oldCompDefnMinorVersion<<20) \
+(oldCompDefnFixVersion<<16)+(oldCompDefnDevStage<<8) \
+oldCompDefnPreRelNumber

#define finderMinorVersion (currentMinorVersion<<4)+(currentFixVersion<<0)

Listing 2-57 SamplePart finder version resources

resource 'vers' (1) {
currentMajorVersion,
finderMinorVersion,
developmentStage,
preReleaseNumber,
verUS,
shortVersionStr,
shortVersionStr", Apple Computer, Inc. 1994-1995"

};

resource 'vers' (2) {
currentMajorVersion,
finderMinorVersion,
developmentStage,
preReleaseNumber,
verUS,
shortVersionStr,
"OpenDoc Sample Code"

};

Code Fragment Resources 2

Because SOM on the Mac OS depends on the Code Fragment Manager, your
part editor’s shared library needs to include a code fragment ('cfrg') resource.
It is important that the name for the fragment description be the editor ID; if
your development environment automatically assigns the name of the library
file to the fragment description, you need to change it.

CookbookBook : SamplePart Page 127 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

128 Defining Resources

Listing 2-58 shows SamplePart’s code fragment resource definition, from the
file SamplePart.r.

Listing 2-58 SamplePart code fragment resource

resource 'cfrg' (0) {
{ /* [1] */

#ifdef _68KBUILD_
kMotorola,

#else
kPowerPC,

#endif
kFullLib,
currentVersion,
compatibleVersion,
kDefaultStackSize,
kNoAppSubFolder,
kIsLib,
kOnDiskFlat,
kZeroOffset,
kWholeFork,
kSamplePartID, /* This must be the class ID */
/* [2] */

#ifdef _68KBUILD_
kMotorola,

#else
kPowerPC,

#endif
kFullLib,
currentVersion,
compatibleVersion,
kDefaultStackSize,
kNoAppSubFolder,
kIsLib,
kOnDiskFlat,
kZeroOffset,
kWholeFork,
kPartClassName /* This must be the SOM class name */

CookbookBook : SamplePart Page 128 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Defining Resources 129

S
am

pleP
art Tutorial

2

/* for this part */
}

};

Name-Mapping Resources 2

Dynamic binding is the process by which OpenDoc matches a part editor at
runtime to a part appearing in a document. On the Mac OS, dynamic binding is
implemented through a set of six name-mapping resources (of type 'nmap') in
the shared library files of part editors. These resources describe various aspects
of the relationships between content and part editors. OpenDoc uses these
resources to construct name spaces in the name-space object, maintained by the
session object, when the user opens a document.

The name mappings that SamplePart defines are described in the following
sections. SamplePart’s 'nmap' resources are defined in the file SamplePart.r. The
constant definitions strings on which they depend are defined in the file
SamplePartDef.h. The listings in the following sections combine fragments of
these files to illustrate the name mappings.

Mapping Kind to Category 2

A part stores its content in its contents property as one or more part kind, and
part kinds belong to one or more part category. OpenDoc requires part editors
to map their part kinds to their part categories.

A part kind identifies its data format uniquely. A kind designation is an ISO
string (7-bit ASCII) identifying the part kind, usually in a company-specific
way, for proprietary and standard data types. For example, the following could
be kind designations: SurfCorp:SurfText, SurfCorp:Picture:BlackAndWhite, and
SurfCorp:Picture:Color.

The part category of a part’s content defines a generic classification of its data
format. For example, OpenDoc recognizes part categories of plain text, styled
text, object-based graphics, 3D object-based graphics, and many others. For a
list of OpenDoc’s standard part categories with explanations, see the OpenDoc
Programmer’s Guide for the Mac OS.

A part’s kind-to-category mapping must specify the category (or categories) for
each kind the editor supports. A kind can belong to more than one category, in
which case the categories are unordered. OpenDoc uses the information from
this mapping to help the user define a default editor for each category.

CookbookBook : SamplePart Page 129 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

130 Defining Resources

Listing 2-59 shows SamplePart’s very simple kind-to-category mapping.

Listing 2-59 Kind-to-category mapping

#define kSamplePartKind kODISOPrefix "Apple:Kind:SamplePart"

#define kSamplePartCategory kODISOPrefix "Apple:Category:Sample Code"

#define kBaseResourceID 20001
#define kKindCategoryMapId kBaseResourceID+1

resource kODNameMappings (kKindCategoryMapId) {
kODKind,
{ /* array Types: 1 elements */

/* [1] */
kSamplePartKind,
kODIsAnISOStringList
{

{ /* array ClassIDs: 1 elements */
/* [1] */
kSamplePartCategory

}
}

}
};

Mapping Editor to Kind 2

OpenDoc requires each part editor to map its editor identifier to its part kinds.
An editor identifier represents a part editor. It comprises the editor’s SOM
module name and ODPart subclass name, separated by a double colon. A part
kind designation represents the unique data format of a part editor, as
described in the previous section.

A class identifier is associated with one or more part kind. The part kinds must
be listed in decreasing order of fidelity.

Listing 2-60 shows SamplePart’s editor-to-kind mapping.

CookbookBook : SamplePart Page 130 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Defining Resources 131

S
am

pleP
art Tutorial

2

Listing 2-60 Editor-to-kind mapping

#define kPartClassName "som_SamplePart"
#define kSamplePartID "SampleCode::"kPartClassName
#define kSamplePartKind kODISOPrefix "Apple:Kind:SamplePart"
#define kEditorKindMapId kBaseResourceID+2

resource kODNameMappings (kEditorKindMapId) {
kODEditorKinds,
{ /* array Types: 1 elements */

/* [1] */
kSamplePartID,
kODIsAnISOStringList
{

{ /* array ClassIDs: 1 elements */
/* [1] */
kSamplePartKind

}
}

}
};

Mapping ISO Strings to User-Readable Names 2

OpenDoc requires each part editor to map its editor identifier, part kind, and
part category to user-readable strings. OpenDoc manipulates editor identifiers,
part kinds, and part categories as ISO strings, which are not appropriate for
display to the user. OpenDoc requires that user-readable text be in the form of
international strings that can be in any script or language, so you must provide
a name mapping resource to associate these three ISO string designations with
user-readable names.

Listing 2-61 shows SamplePart’s editor-to-string mapping.

Listing 2-61 Editor-to-string mapping

#define kPartClassName "som_SamplePart"
#define kSamplePartID "SampleCode::"kPartClassName
#define kSamplePartEditorUserString "SamplePart 1.0"
#define kEditorUserStringMapId kBaseResourceID+3

CookbookBook : SamplePart Page 131 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

132 Defining Resources

resource kODNameMappings (kEditorUserStringMapId) {
kODEditorUserString,
{ /* array Types: 1 elements */

/* [1] */
kSamplePartID,
kODIsINTLText
{

smRoman,
langEnglish,
kSamplePartEditorUserString

}
}

};

Listing 2-62 shows SamplePart’s kind-to-string mapping.

Listing 2-62 Kind-to-string mapping

#define kSamplePartKind kODISOPrefix "Apple:Kind:SamplePart"

#define kSamplePartKindUserString "SamplePart"

#define kKindUserStringMapId kBaseResourceID+4

resource kODNameMappings (kKindUserStringMapId) {
kODKindUserString,
{ /* array Types: 1 elements */

/* [1] */
kSamplePartKind,
kODIsINTLText
{

smRoman,
langEnglish,
kSamplePartKindUserString

}
}

};

CookbookBook : SamplePart Page 132 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

Defining Resources 133

S
am

pleP
art Tutorial

2

It is not necessary to provide user-readable names for OpenDoc’s standard part
categories because these names are already defined by OpenDoc. You should
use these standard categories if at all possible. SamplePart is a bad example in
this case—because SamplePart has no content, it cannot use any of the
standard categories. OpenDoc’s standard categories are listed in the OpenDoc
Programmer’s Guide for the Mac OS.

Listing 2-63 shows SamplePart’s category-to-string mapping.

Listing 2-63 Category-to-string mapping

#define kSamplePartCategory kODISOPrefix "Apple:Category:Sample Code"
#define kSamplePartCategoryUserString "Sample Code"
#define kCategoryUserStringMapId kBaseResourceID+5

resource kODNameMappings (kCategoryUserStringMapId) {
kODCategoryUserString,
{ /* array KeyList: 1 elements */

/* [1] */
kSamplePartCategory,
kODIsINTLText {

smRoman,
langEnglish,
kSamplePartCategoryUserString

}
}

};

Mapping Kind to Mac OS Type 2

OpenDoc requires part editors to provide a one-to-one mapping of their part
kinds to platform-specific file types. On the Mac OS, this table maps part kinds
to old-style Mac OS four-letter file types. When OpenDoc creates documents
from stationery or dragging content to the Finder, it uses this resource to figure
out the OSType file type of the resulting file. The Finder uses this information to
associate the proper icon with its kind.

Listing 2-64 shows SamplePart’s kind–to–Mac-OS-type mapping.

CookbookBook : SamplePart Page 133 Thursday, December 7, 1995 4:59 PM

C H A P T E R 2

SamplePart Tutorial

134 Defining Resources

Listing 2-64 Kind–to–Mac-OS-type mapping

#define kSamplePartKind kODISOPrefix "Apple:Kind:SamplePart"
#define kSamplePartDocumentOSType 'SPDC'
#define kOldMacOSTypeMapId kBaseResourceID+6

resource kODNameMappings (kOldMacOSTypeMapId) {
kODKindOldMacOSType,
{ /* array KeyList: 1 elements */

/* [1] */
kSamplePartKind,
kODIsMacOSType {

kSamplePartDocumentOSType
}

}
};

CookbookBook : SamplePart Page 134 Thursday, December 7, 1995 4:59 PM

C H A P T E R 3

Contents

135

Contents

3

Figure 3-0
Listing 3-0
Table 3-0

3 Where To Go From Here

SoundEditor 137
PictureViewer 138
TextEditor 138
DrawEditor 139
ScriptRunner 140

This document was created with FrameMaker 4.0.4

CookbookBook : WhereToGoTOC Page 135 Thursday, December 7, 1995 4:59 PM

CookbookBook : WhereToGoTOC Page 136 Thursday, December 7, 1995 4:59 PM

C H A P T E R 3

SoundEditor

137

W
here To G

o F
rom

 H
ere

3

Where To Go From Here 3

This chapter presents brief descriptions of code samples that illustrate part
editor features not supported by SamplePart, such as embedding of other parts,
data interchange via the Clipboard, linking, and drag and drop. These code
samples are well commented and designed specifically to illustrate proper
implementation of these features.

Information on these subjects is available in the

OpenDoc Programmer’s Guide for
the Mac OS

, in technical notes and engineering recipes included with OpenDoc
releases, and via World Wide Web pages linked to the OpenDoc home page at
the following universal resource locator (URL) address:

http://www.opendoc.apple.com

The following sections describe official sample part editors that ship with
OpenDoc for the Mac OS.

SoundEditor 3

SoundEditor enables users to record, play back, save, and rerecord sounds
from the current audio input device. It supports data stored in Mac OS

'snd '

format. SoundEditor uses the SOM-wrapper-object architecture used in
SamplePart, which encapsulates its SOM interface in a class with almost no
implementation.

SoundEditor implements the following features:

■

displaying in the four standard view types (frame, large icon, small icon,
and thumbnail)

■

the View as Window command

■

handling of its own menus

■

Record, Pause, Stop, and Play commands

■

Clipboard operations for sound data

■

binding with existing Mac OS

'snd '

 files

■

Save command

This document was created with FrameMaker 4.0.4

CookbookBook : WhereToGo Page 137 Thursday, December 7, 1995 4:59 PM

C H A P T E R 3

Where To Go From Here

138

PictureViewer

PictureViewer 3

PictureViewer allows users to drop arbitrary

'PICT'

 data into OpenDoc
documents. Pictures can be cropped or scaled to the frame (the default mode is
cropped). PictureViewer is a part viewer, not a part editor, so its content is not
editable. PictureViewer is implemented as a straight SOM class; that is, it
provides its own implementation and does not delegate to a separate C++ class
in the manner of SamplePart.

PictureViewer implements the following features:

■

displaying in the four standard view types (frame, large icon, small icon,
and thumbnail)

■

the View as Window command

■

Clipboard operations for

'PICT'

 data

■

binding of Mac OS

'PICT'

 files

■

handling of its own Display menu for cropping or scaling

■

printing

■

Save command

TextEditor 3

TextEditor implements a feature set is similar to the Mac OS utility application
SimpleText. TextEditor is implemented as a straight SOM class; that is, its

ODPart

 subclass contains implementation.

TextEditor implements the following features:

■

support of Mac OS text data as well as native data formats

■

displaying in the four standard view types (frame, large icon, small icon,
and thumbnail)

■

Clipboard operations for text data

■

handling of text style menus (Font, Size, Style)

CookbookBook : WhereToGo Page 138 Thursday, December 7, 1995 4:59 PM

C H A P T E R 3

Where To Go From Here

DrawEditor

139

W
here To G

o F
rom

 H
ere

3

■

support of multiple languages

■

Text Services Manager support (inline input for two-byte systems)

■

drag and drop of any text

■

scrolling when root part

■

translation of foreign text types

■

text ruler (with Show and Hide commands and as part preference)

■

preferences for setting document margins, default font, and so on

DrawEditor 3

DrawEditor is based on QuickDraw and provides tools for editing and creating
shapes. DrawEditor uses the SOM-wrapper-object architecture used in
SamplePart, which encapsulates its SOM interface in a class with almost no
implementation.

DrawEditor implements the following features:

■

displaying in the four standard view types (frame, large icon, small icon,
and thumbnail)

■

Clipboard operations

■

creation of shapes (rectangles, ovals, triangles, and lines)

■

editing of shapes by resizing and z-ordering

■

styling objects (pen color, pen pattern, pen width, fill color, and fill pattern)

■

embedding

■

drag and drop of any content

■

linking of any content

■

undo of all user actions

■

floating tool and color palettes

CookbookBook : WhereToGo Page 139 Thursday, December 7, 1995 4:59 PM

C H A P T E R 3

Where To Go From Here

140

ScriptRunner

ScriptRunner 3

ScriptRunner is an OSA (Open Scripting Architecture) scripting palette that
works in conjunction with the TextEditor sample.

ScriptRunner implements the following features:

■

an OpenDoc shell plug-in

■

nonpersistent palette and result windows

■

an

ODExtension

 subclass for simple data transfer

■

an

ODExtension

 subclass for clients to control the palette window

CookbookBook : WhereToGo Page 140 Thursday, December 7, 1995 4:59 PM

A
P

P
E

N
D

IX
E

S

Appendixes

This document was created with FrameMaker 4.0.4

CookbookBook : AppOpener Page 141 Thursday, December 7, 1995 4:59 PM

CookbookBook : AppOpener Page 142 Thursday, December 7, 1995 4:59 PM

143

A P P E N D I X A

A

OpenDoc Utilities A

This appendix describes some of the unsupported utilities provided with the
Mac OS implementation of OpenDoc for the convenience of developers. The
utilities described in this appendix are those used by SamplePart. They
comprise classes, types, macros, and functions implemented in files with the
following names:

Except.cpp
FlipEnd.cpp
FocusLib.cpp
IText.cpp
ODMemory.cpp
ODUtils.cpp
StdTypIO.cpp
StorUtil.cpp
TempObj.cpp
UseRsrcM.cpp
WinUtils.cpp

These filenames also apply to header files containing class definitions, method
declarations, and function, type, and macro definitions. The header files have
the same filenames with the extension .h. To use these utilities, link the .cpp
files into your library, and include the .h header files in your source files.

Note

All of these utilities are supplied with the Mac OS
implementation of OpenDoc on an “as-is” basis. They have
not received the rigorous quality-assurance testing given
to OpenDoc itself, and they are not part of the official
OpenDoc API. Source code is provided, and you are
welcome to modify the routines as necessary.

◆

Figure A-0
Listing A-0
Table A-0

This document was created with FrameMaker 4.0.4

CookbookBook : UtilitiesAppendix Page 143 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

144

Exception Handling (Except)

Exception Handling (Except) A

This section describes the OpenDoc exception-handling utility, which resides in
the files Except. h and Except.cpp. You can use the exception-handling utility to
generate and handle your own exceptions as well as respond to any exceptions
generated as a result of calls to OpenDoc. The exception-handling utility
implements a simple throw-and-catch exception-handling scheme, similar to
those found in some application frameworks and development environments.

Using the Exception-Handling Utility A

The use of the exception-handling utility is optional. However, if you don’t use
it you must check the environment variable (

ev

) after every SOM call you make
and handle it appropriately. The exception-handling utility facilitates this
requirement, as described in “Handling SOM Exceptions” on page 149.

To use the exception-handling utility, you add the file Except.cpp to your
project (if you use a project-based system) or makefile (if you use MPW) and
include Except.h in your source files.

IMPORTANT

You must include the header Except.h in your source files

before

 including the headers of any SOM classes (.xh files in
C++). If you precompile any SOM headers, you should
also precompile Except.h and put it first among the
headers that you precompile.

▲

If you’re building your project in debug mode (the symbol

ODDebug

 is defined
as

1

), then Except.cpp will call functions from Crawl.cpp, and you’ll need to
add that source file to your project or makefile. Crawl.cpp in turn depends on
ToolLibs.o (68K) or PPCToolsLib.o (PowerPC), which are part of your
development system.

The Exception-Handling Scheme A

In the kind of exception system implemented by the exception-handling utility,
an error is signaled by being thrown, or made known to the system, by using
the macro call

THROW

 or one of its variants. The stack then unwinds back to the

CookbookBook : UtilitiesAppendix Page 144 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Exception Handling (Except)

145

O
penD

oc U
tilities

A

point where a calling function has set up an error handler for this exception.
The handler then catches, or responds to, the exception; it performs whatever
recovery or cleanup is necessary. The error handler can then allow execution to
continue or—more commonly—it can reraise the exception, throwing it back to
the next exception handler on the stack.

An exception handler in this scheme is defined as a block of code, delimited by
the macro calls

TRY

,

CATCH_ALL

, and

ENDTRY

 (or their variants). Only exceptions
that are thrown within the scope of the

TRY

/

ENDTRY

 pair of a handler can be
handled by that handler.

The following is an example of the most basic use of this kind of exception
system. It shows the exception handling involved with the fail-safe allocation
of a pair of handles:

ODHandle MyNewHandle(ODSize size)
{

OSErr err;
ODHandle h = NewTempHandle(size,&err);
THROW_IF_ERROR(err);
return h;

}

This function (

MyNewHandle

) throws an exception if the

NewTempHandle

 function
returns a nonzero error.

MyNewHandle

 does not itself catch any exceptions. The
next function (

TwoHandles

) uses

MyNewHandle

 to allocate the pair of handles:

void TwoHandles()
{

Handle h1, h2;
h1 = MyNewHandle(10000);
TRY{

h2 = MyNewHandle(10000);
}CATCH_ALL{

ODDisposeHandle(h1);
RERAISE;

}ENDTRY
...

}

In

TwoHandles

, if the first call to

MyNewHandle

 fails, it throws an error. Since

TwoHandles

 has not set up an exception handler around that call, the exception

CookbookBook : UtilitiesAppendix Page 145 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

146

Exception Handling (Except)

is thrown out of

TwoHandles

 and into its caller, and so on up the stack until an
exception handler is found. None of the code shown here handles that
exception.

If the first call succeeds, however, execution passes to the second call to

MyNewHandle

, which is inside an exception handler. If this call fails and throws
an exception, the exception is caught by the exception handler, and the block
after

CATCH_ALL

 executes. This block cleans up by disposing of the first allocated
handle (

h1

), preventing a memory leak. Thus, either both handles are allocated
or neither is.

After

h1

 is disposed of, the exception handler calls

RERAISE

, which re-throws the
same exception up the stack until the next enclosing exception handler is
found. (If the handler hadn’t called

RERAISE

, execution would have fallen out of
the exception handler to the statement following

ENDTRY

.)

If the second call to

MyNewHandle

 succeeds, execution falls out of the entire
exception handler, skipping the

CATCH_ALL

 block entirely (since there was no
exception) and ending up at the statement immediately following

ENDTRY

.

Throwing Exceptions A

In the OpenDoc exception-handling utility, you throw an exception by calling
the

THROW

 macro or one of its variants. This causes execution to jump
immediately to the closest exception handler below it on the stack. These are
the variants of

THROW

:

THROW A

THROW

 throws an exception with the error number that is supplied to it. The
error can be a standard OpenDoc error or a platform-specific error. The error
code must be a nonzero value; it doesn’t make sense to throw an exception
whose value is

kODNoError

.

THROW_IF_NULL A

THROW_IF_NULL

 throws the exception

kODErrOutOfMemory

 if a null pointer is
supplied to it. Call this macro after you call a memory-allocation function (such
as

SOMNew

 or

MMNewPtr

) that returns null when there is insufficient memory.

Do not use

THROW_IF_NULL

 with functions that can return null for other reasons.
For example, the Mac OS Resource Manager routine

GetResource

 returns null if

CookbookBook : UtilitiesAppendix Page 146 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Exception Handling (Except)

147

O
penD

oc U
tilities

A

the resource cannot be found; in that case, you should first call

ResError

 to find
the actual error code, and then call

THROW

.

THROW_IF_ERROR A

THROW_IF_ERROR

 throws an exception if the error supplied to it is nonzero. If the
error value is

kODNoError

, nothing happens. This is a useful call to use following
a function call whose return value is an error code.

For example, the Mac OS File Manager function

FSpOpenDF

 returns zero if it
succeeds, and otherwise a nonzero

OSErr

 code. Passing the result to

THROW_IF_ERROR

 ensures that the right exception is thrown if the call to

FSpOpenDF

 fails.

Exception Handlers A

An exception handler consists of a

TRY

 block, zero or more

CATCH_ALL

 blocks,
and an

ENDTRY

:

TRY{
// statements

}CATCH_ALL{
// statements

}ENDTRY

It’s perfectly legal lexically (and not uncommon) to nest exception handlers in a
single function. Any error caught and reraised by the inner handler will be
caught by the outer one.

The rest of this section describes what actions each of the macro statements and
its associated code block perform.

TRY A

Following a

TRY

 macro, the immediately subsequent statements are executed. If
one of the statements, or any function one of the statements calls, throws an
exception that reaches this exception handler, then one of the following

CATCH_ALL

 blocks may be executed. Otherwise, after the last statement in the

TRY

block finishes, control passes to the statement following the

ENDTRY

.

CookbookBook : UtilitiesAppendix Page 147 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

148

Exception Handling (Except)

CATCH_ALL A

If an exception is thrown to this handler, the statements following the

CATCH_ALL

 macro are executed. To tell what error code was thrown, use the

ErrorCode function.

The flow of control for the CATCH_ALL is the same as for CATCH. If no exception is
raised or re-raised, control passes from the last statement in this CATCH_ALL
block to the statement following the ENDTRY.

ENDTRY A

The ENDTRY macro statement indicates the end of the exception handler. After a
TRY or CATCH block finishes without throwing or re-raising an exception, the
exception handler removes itself from the stack and control passes to the
statement following ENDTRY.

RERAISE A

The RERAISE macro statement is called within a CATCH_ALL block. It causes the
exception to be thrown again, to the next active exception handler on the stack.
This is the normal behavior for an exception handler —most of the time you
don’t want to hide the error, you want to propagate it so a higher level handler
can deal with it.

The SOM Environment Parameter A

OpenDoc objects are SOM objects, which means that they follow the CORBA
rules for handling exceptions. Every method call made to an OpenDoc object
(including your part, as a subclass of ODPart) must therefore include an
environment parameter (ev), a pointer to a value that can describe an error. For
example, the CreateLinkSource method of ODDraft has the following prototype
(in IDL):

ODLinkSource CreateLinkSource(in ODPart part);

The method takes a single parameter, of type ODPart. To use this method,
however, a caller in C++ must supply two parameters:

MyLinkSource = MyDraft->CreateLinkSource(ev, somSelf);

CookbookBook : UtilitiesAppendix Page 148 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Exception Handling (Except) 149

O
penD

oc U
tilities

A

If execution of the method results in an error condition, the receiver of the call
(the draft object in this case) must place an exception code in the value pointed
to by ev and return. The caller must therefore examine the ev parameter after
every call to a SOM object, to see if an exception has been raised.

All OpenDoc methods that you call, as well as all public methods of your part
editor that you write, must return errors this way. What this means for your
exception handling is that

■ you must supply an environment variable with all method calls to OpenDoc
objects

■ you must check the environment variable after the call returns

The environment variable is passed along through a sequence of calls and can
be used in calls to both SOM and C++ objects. For example, the environment
variable is passed in these situations:

■ If your C++ method (that does not itself receive an environment parameter)
calls a SOM method, in which case it must use a SOM utility method to
retrieve the environment variable.

■ If your SOM method calls another SOM method, it can simply pass on the
environment parameter it receives.

■ If your SOM method calls a C++ method that may in turn call a SOM
method, your SOM method can pass the environment parameter on to the
C++ method (if the C++ method was designed to accept it; see next bullet).

■ If your C++ method is called by a SOM method and in turn makes calls to
SOM methods, it is best to design it to accept an environment parameter that
it can then pass on.

For more information on the environment parameter and exceptions, see
SOMobjects Developer Toolkit Users Guide and SOMobjects Developer Toolkit
Programmers Reference Manual from IBM.

Any exception-handling scheme that you use must support this method of
passing exceptions. The OpenDoc utility described in this section helps you
check the environment variable after each method call.

Handling SOM Exceptions A

The exception-handling utility has some special features that simplify working
with SOM. There are two reasons why these features are necessary:

CookbookBook : UtilitiesAppendix Page 149 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

150 Exception Handling (Except)

■ SOM has its own way of returning error codes, based on an environment
variable, a pointer to which is passed into every method of a SOM object.

■ You cannot throw an exception, or allow one to be thrown, out of a SOM
method. SOM requires that a method return normally, and throwing an
exception that is caught by a handler in some other function farther up the
stack would violate this.

This implies that the ev parameter must be checked for an error value after
every call to a SOM method and that an exception raised in a SOM method or
any function it calls must be caught and its error code stored in the ev
parameter. The exception-handling utility includes functions to simplify these
tasks, which are variants of the exception handling macros previously
introduced:

SOM_TRY
SOM_CATCH_ALL
SOM_ENDTRY

These macros are identical to TRY, CATCH_ALL, and ENDTRY, except that when they
catch an exception, they store the exception value in the method’s ev parameter
where the caller can see it.

Because you cannot throw an exception out of a SOM method, it is illegal to
RERAISE in the SOM_CATCH_ALL block. You should exit the function normally by
falling off the end or calling return (in C++ the former generates slightly better
code).

IMPORTANT

SOM_ENDTRY works differently than ENDTRY in that its default
behavior is to reraise the exception by storing the error
information in the Environment variable so it is propagated
to the caller. (With ENDTRY you must explicitly reraise in
your CATCH_ALL block or the exception will disappear.) If
you don’t want to return the exception to the caller, you
must call SetErrorCode(kODNoError) in the SOM_CATCH
block. ▲

Automatic Environment Checking A

If you include the header Except.h in your source files, it defines a special
preprocessor symbol that modifies the way SOM messages are sent. Any SOM

CookbookBook : UtilitiesAppendix Page 150 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Exception Handling (Except) 151

O
penD

oc U
tilities

A

headers (.xh files for development in C++) included after Except.h has been
included are modified so that, after the message is sent and control returns to
the caller, the environment variable (ev) is checked and an exception raised if
the variable contains an error.

For example, the following code fragment does not use automatic environment
checking:

#include <ODWingDing.xh>
...
long AFunction (Environment *ev, ODWingDing *wingDing)
{

long result = wingDing->Spin(ev);
if(ev->_major) { // ODWingDing::Spin returns error

result = 0;
goto handle_error;

}
...

handle_error:
return result;

}

In this example, Except.h is not included, so environment checking is not
automatic, and the caller (AFunction) can and must check the environment
variable after every SOM method call.

Here is the same example with automatic environment checking:

#include <Except.h> // Enables automatic ev checking
#include <ODWingDing.xh>
...
long AFunction (Environment *ev, ODWingDing *wingDing)
{

long result;
SOM_TRY

long result = wingDing->Spin(ev);
...

SOM_CATCH_ALL
result = kODNULL;

SOM_ENDTRY
return result;

}

CookbookBook : UtilitiesAppendix Page 151 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

152 Exception Handling (Except)

Since Except.h is included before ODWingDing.h, environment-checking code
is added to the call to the Spin method of ODWingDing. If Spin encounters an
error and returns error status in ev, an exception with that same error code is
thrown, which will be caught by the SOM_CATCH_ALL exception handler, and in
its turn returned in the ev parameter of AFunction.

There are two important precautions to keep in mind:

■ You must include Except.h before including any headers that declare SOM
classes if you want to use automatic environment checking for them.

■ When using automatic environment checking, any SOM method call may
throw an exception, so any SOM method that calls other SOM methods must
be prepared to handle exceptions.

Coding Precautions A

To achieve its results as a C++ library, the OpenDoc exception-handling utility
relies on complex macros and sophisticated library functions. To some extent, it
“fools” the compiler. Because of this, there are some precautions you have to
take to avoid causing the compiler to generate incorrect code.

Very few C++ compilers have intrinsic support for exceptions, so the OpenDoc
exception-handling utility is based on the ANSI setjmp and longjmp calls.
Because of this basis, the compiler cannot always track the possible flow of
control when exceptions are thrown and caught. The compiler can generate
code that improperly fails to pop an exception handler off the stack or that
makes incorrect assumptions about flow of execution.

This section discusses the precautions you must follow to make sure that the
complier makes no mistakes, even when you have nested exception handlers.

Make Variables That You Modify Volatile A

The compiler’s register allocator and optimizer can make incorrect
assumptions and generate bad code unless you take this precaution: always
declare as volatile any variable or parameter that you modify in a TRY block
and then use in a CATCH or CATCH_ALL block.

The reason for this is that the compiler doesn’t understand that the TRY block
can be executed on the way to a CATCH block, and therefore that the variable
may be modified before the CATCH block is reached. It may therefore end up
using an obsolete value for the variable while in the CATCH block. To work

CookbookBook : UtilitiesAppendix Page 152 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Data Value Manipulation (FlipEnd) 153

O
penD

oc U
tilities

A

around this, you have to tell the compiler not to store the variable’s value in a
register (which may be out of date) but always to look it up from the stack
frame.

The C++ volatile keyword in the variable declaration does this (tells the
compiler not to store the variable’s value in a register). Unfortunately, some
compilers don’t implement it properly, and it can be confusing to use properly
with pointer variables. For this reason the exception system defines a macro
ODVolatile that declares a variable to be volatile. All you have to do is put this
after the variable declaration. Here’s an example:

void *p = kODNULL; ODVolatile(p);
TRY{

Zog1();
p = ODNewPtr(10000);
Zog2();

}CATCH{
ODDisposePtr(p);
RERAISE;

}ENDTRY

The purpose of the exception handler is to make sure that p is disposed of on
the way out in case it was allocated by ODNewPtr. Because p is modified inside
the TRY block, it has to be marked as volatile. (Note that when the CATCH block is
called, p might still be NULL—if Zog1 or ODNewPtr threw the exception—or it
might be a valid pointer, if it was Zog2 that threw the exception. Fortunately, we
pre-initialized p to kODNULL, and ODDisposePtr can safely be passed a null
pointer. If we hadn’t initialized p, this code might crash.)

Data Value Manipulation (FlipEnd) A

This section describes the utilities defined in the files FlipEnd.h and
FlipEnd.cpp. These routines are used to convert between big-endian
(most-significant byte first) and little-endian (least-significant byte first) data
values, which may be required for cross-platform data storage.

The utility assumes that big-endian platforms define the compiler switch
_PLATFORM_BIG_ENDIAN. The standard format for the functions and macros

CookbookBook : UtilitiesAppendix Page 153 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

154 Data Value Manipulation (FlipEnd)

defined in the utility is little endian. Therefore, using the utility to coerce data
into standard format means you are writing data in little-endian format.

Conversion Functions A

The following functions convert the indicated types of values to the opposite
endian format in memory. Clients typically do not use these functions directly,
because they always swap bytes, whether it is appropriate to do so or not on
the current platform. Instead, clients normally use the macros (described in the
following section) which convert to and from standard format.

ODFlipShort A

The ODFlipShort function takes as a parameter a single 2-byte integer and
returns the value with the opposite endian format. The prototype of this
function appears as follows:

ODUShort ODFlipShort(ODUShort n);

ODFlipShortArray A

The ODFlipShortArray function takes as parameters a pointer to an array of
2-byte integers and a count of the number of integers in the array. The function
converts the endian format of each integer in the array. The prototype of this
function appears as follows:

void ODFlipShortArray(ODUShort* a, unsigned long count);

ODFlipLong A

The ODFlipLong function takes as a parameter a single 4-byte integer and
returns the value with opposite endian format. The prototype of this function
appears as follows:

ODULong ODFlipLong(ODULong n);

ODFlipLongArray A

The ODFlipLongArray function takes as parameters a pointer to an array of
4-byte integers and a count of the number of integers in the array. The function

CookbookBook : UtilitiesAppendix Page 154 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Data Value Manipulation (FlipEnd) 155

O
penD

oc U
tilities

A

converts the endian format of each integer in the array. The prototype of this
function appears as follows:

void ODFlipLongArray(ODULong* a, unsigned long count);

ODFlipStruct A

The ODFlipStruct function takes as parameters a pointer to a C++ structure and
a pointer to a zero-terminated array of short integers. The prototype of this
function appears as follows:

void ODFlipStruct(void* structure, const short* groups);

This function inverts the endian format of the contents of memory in the
structure parameter, according to the layout described by the groups
parameter. The groups parameter points to a zero-terminated array of shorts,
where each short describes the size of the next chunk of memory in the
structure to be processed. A negative value -n in the groups array indicates a
block of endian-neutral memory, like a string, and causes n bytes of memory to
be skipped over. A positive value n in the groups array indicates a block of n
bytes of memory that should have its bytes flipped end for end. Only positive
values in the set { 2, 4, 8 } are handled. (Other positive values are handled
like negative values: blocks of memory are skipped).

Here is an example of a structure and the groups array indicating how it
should be converted:

struct snod {
long beta;
char gamma[8];
long delta;
short alpha;

};

const short snodGroups[] = {
4, // beta
-8, // gamma
4, // delta
2, // alpha
0, // zero-termination

};

CookbookBook : UtilitiesAppendix Page 155 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

156 Data Value Manipulation (FlipEnd)

Conversion Macros A

The following macros convert to and from standard (little-endian) format. The
macro definitions show what the macros do in terms of the functions described
in the previous section. The #define statements following the #ifdef
conditional define the macros for big-endian platforms; the statements
following the #else conditional define the same macros correctly for
little-endian platforms.

#ifdef _PLATFORM_BIG_ENDIAN_

#define ConvertODUShortToStd(n) ODFlipShort(n)
#define ConvertODUShortFromStd(n) ODFlipShort(n)

#define ConvertODSShortToStd(n) \
((ODSShort) ODFlipShort((ODUShort) n))

#define ConvertODSShortFromStd(n) \
((ODSShort) ODFlipShort((ODUShort) n))

#define ConvertODULongToStd(n) ODFlipLong(n)
#define ConvertODULongFromStd(n) ODFlipLong(n)

#define ConvertODSLongToStd(n) \
((ODSLong) ODFlipLong((ODULong) n))

#define ConvertODSLongFromStd(n) \
((ODSLong) ODFlipLong((ODULong) n))

#define ConvertODStructToStd(s, g) ODFlipStruct((s),(g))
#define ConvertODStructFromStd(s, g) ODFlipStruct((s),(g))

#define ConvertODUShortArrayToStd(a,c) ODFlipShortArray((a),(c))
#define ConvertODUShortArrayFromStd(a,c) ODFlipShortArray((a),(c))

#define ConvertODSShortArrayToStd(a,c) \
ODFlipShortArray((ODUShort*)(a),(c))

#define ConvertODSShortArrayFromStd(a,c) \
ODFlipShortArray((ODUShort*)(a),(c))

#define ConvertODULongArrayToStd(a,c) ODFlipLongArray((a),(c))
#define ConvertODULongArrayFromStd(a,c) ODFlipLongArray((a),(c))

CookbookBook : UtilitiesAppendix Page 156 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Data Value Manipulation (FlipEnd) 157

O
penD

oc U
tilities

A

#define ConvertODSLongArrayToStd(a,c) \
ODFlipLongArray((ODULong*)(a),(c))

#define ConvertODSLongArrayFromStd(a,c) \
ODFlipLongArray((ODULong*)(a),(c))

#else

#define ConvertODUShortToStd(n) (n)
#define ConvertODUShortFromStd(n) (n)

#define ConvertODSShortToStd(n) (n)
#define ConvertODSShortFromStd(n) (n)

#define ConvertODULongToStd(n) (n)
#define ConvertODULongFromStd(n) (n)

#define ConvertODSLongToStd(n) (n)
#define ConvertODSLongFromStd(n) (n)

#define ConvertODStructToStd(s, g) /* do nothing */
#define ConvertODStructFromStd(s, g) /* do nothing */

#define ConvertODUShortArrayToStd(a,c) /* do nothing */
#define ConvertODUShortArrayFromStd(a,c) /* do nothing */

#define ConvertODSShortArrayToStd(a,c) /* do nothing */
#define ConvertODSShortArrayFromStd(a,c) /* do nothing */

#define ConvertODULongArrayToStd(a,c) /* do nothing */
#define ConvertODULongArrayFromStd(a,c) /* do nothing */

#define ConvertODSLongArrayToStd(a,c) /* do nothing */
#define ConvertODSLongArrayFromStd(a,c) /* do nothing */

#endif /* _PLATFORM_BIG_ENDIAN_ */

CookbookBook : UtilitiesAppendix Page 157 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

158 QuickDraw Focus Library (FocusLib)

QuickDraw Focus Library (FocusLib) A

This section describes the utilities defined in the files FocusLib.h and
FocusLib.cpp. These utilities are useful for setting up the drawing environment
to render into a facet for Mac OS part editors using the classic QuickDraw
imaging environment. Using QuickDraw GX is discussed in the recipe
QuickDraw GX and OpenDoc.

What the Focus Library Does A

The term focus, as used in the focus library, is only dimly related to the regular
OpenDoc concept of a focus. The term comes from the Focus method in
MacApp, which sets up QuickDraw to draw into a view.

Focusing does the following things:

■ Makes the facet’s canvas the current graphics port (GrafPort).

■ Moves the origin of the graphics port to the origin of the frame’s coordinate
system, based on the internal and external transformations. In other words,
(0,0) to QuickDraw is now the same place as (0,0) in your frame’s
coordinates.

■ Sets the clip region to the facet’s clip shape, to prevent you from drawing
outside of the facet.

Once your drawing environment is focused, you can start issuing QuickDraw
commands (or doing higher level things that use QuickDraw) using your
frame’s coordinate system.

What the Focus Library Does Not Do A

The focus library sets up the QuickDraw environment, so it cannot set up any
kind of drawing state or transformations that QuickDraw does not understand.
In particular, it does not handle any type of transformations other than offsets.
If your facet ends up scaled, rotated, or skewed, the focus library helps you
only with the offset portion of the transformation. You can do the rest of the
transformation manually by transforming the coordinates of all points before
you draw them.

CookbookBook : UtilitiesAppendix Page 158 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

QuickDraw Focus Library (FocusLib) 159

O
penD

oc U
tilities

A

Transformations other than scaling are particularly hard to handle in
QuickDraw, which provides no native facilities for rotating text, bitmaps, or
ellipses. QuickDraw GX handles all kinds of transformations automatically.

Using the Focus Library From C++ A

Using the focus library is easy. The usual way, for C++ clients, is to declare a
CFocus object on the stack. When the object is constructed, the focusing takes
place. When the object goes out of scope and is destroyed, the previous state of
QuickDraw is restored. For example:

 void DrawMyStuff(Environment *ev, ODFacet *facet) {
 CFocus foc(ev,facet);
 MoveTo(0,0);
 LineTo(100,100);
 }

There are three variants of CFocus, described in the following sections.

CFocusWindow A

The CFocusWindow class sets the window, not the facet’s canvas, as the current
graphics port. There is no difference, unless your facet is on an offscreen
canvas. In that case, a regular CFocus would not cause the drawing to appear
immediately on screen since it would first go into the offscreen canvas until the
next update event. For interactive use such as rubber-banding a line or object
while the mouse is down, use CFocusWindow to ensure that things are drawn
immediately to the screen.

CFocusFrame A

The CFocusFrame class does not take into account the frame’s internal
transformation. This means that (0,0) will be the top-left corner of the facet.
This is useful when drawing frame adornments such as borders or scroll bars
instead of the actual contents.

CFocusWindowFrame A

The CFocusWindowFrame class is a combination of CFocusWindow and CFocusFrame.

CookbookBook : UtilitiesAppendix Page 159 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

160 QuickDraw Focus Library (FocusLib)

The constructors of any of the CFocus classes take an optional extra parameter,
which is a pointer to an ODShape object. If it is supplied, drawing is further
clipped to the intersection of that shape and the facet’s clip shape. This is useful
when drawing into only part of the facet (as when handling a Draw method call).

Using the Focus Library From C A

If you are using C, or do not use C++ features like constructors, you can
explicitly call the BeginFocus and EndFocus functions. For example:

 void DrawMyStuff(Environment *ev, ODFacet *facet) {
 FocusState state;
 BeginFocus(ev,&state,facet,kODTrue,kODFalse,kODNULL);
 MoveTo(0,0);
 LineTo(100,100);
 EndFocus(&state); // Must explicitly end focusing!
 }

You must declare a FocusState variable and then call BeginFocus, whose
parameters look like this:

void BeginFocus(Environment *ev, FocusState*, ODFacet*,
ODBoolean toContent, ODBoolean toWindow, ODShape *clipTo);

The toContent parameter determines whether to clip to the frame’s content (as
in CFocus) or to the frame border (as in CFocusFrame).

The toWindow parameter determines whether to draw directly into the window
(as in CFocus) or into the facet’s canvas (as in CFocusWindow).

The clipTo parameter, if not kODNULL, is an ODShape to which drawing is clipped.

IMPORTANT

It is important that you always call EndFocus after
BeginFocus. If you don’t, the drawing state is not restored
and you will leak some memory. If you use exceptions, and
anything between BeginFocus and EndFocus could throw an
exception, you need to catch the exception and call
EndFocus before re-raising it. (The C++ classes are based on
the Destructo class, so they always clean up
automatically.) ▲

CookbookBook : UtilitiesAppendix Page 160 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

International Text (IText) 161

O
penD

oc U
tilities

A

PostScript Printing A

The focus library takes care of some tricky situations in PostScript printing. The
LaserWriter driver does not handle QuickDraw Regions, so any attempt to clip
to a nonrectangular area is ignored in the PostScript output. Not being able to
clip to nonrectangular areas is a problem, since facets are often clipped to
nonrectangular areas.

To work around this, the focus library includes two utility functions that emit
some fancy PostScript code to set the clipping properly. If you are using the
focus library calls described previously, these functions are called automatically
and you don’t need to worry about them. You need to know about these calls
only if you do not want to use the rest of the focus library.

ODBeginPostScriptClip emits PostScript code to clip to the ODShape object
passed in (in the coordinate system of the current graphics port).
ODEndPostScriptClip ends the clipping. These functions will have no effect
unless the current graphics port is in fact a printing port that is printing via the
LaserWriter driver.

International Text (IText) A

This section describes the utilities defined in the files IText.h and IText.cpp.
These utilities create, destroy, and manipulate international text (ODIText)
structures, which contain a variable-size text buffer as well as Mac OS script
and language codes.

Creation in default heap A

The following functions create an ODIText structure using a C string. On the
Mac OS, the ODScriptCode and the ODLangCode parameters correspond to the
platform script code and language code. The CreateIText function is
overloaded to use different types of input parameters, as shown throughout
this section.

ODIText* CreateITextCString(ODScriptCode script, ODLangCode lang,
char* text);

ODIText* CreateIText(ODScriptCode script, ODLangCode lang, char* text);

CookbookBook : UtilitiesAppendix Page 161 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

162 International Text (IText)

The following functions create an ODIText structure using a Pascal string.

ODIText* CreateITextPString(ODScriptCode script, ODLangCode lang,
StringPtr text);

ODIText* CreateIText(ODScriptCode script, ODLangCode lang,
StringPtr text);

The following functions create an ODIText structure with an empty string of
specified length.

ODIText* CreateITextClear(ODScriptCode script, ODLangCode lang,
ODSize stringLength);

ODIText* CreateIText(ODScriptCode script, ODLangCode lang,
ODSize stringLength);

The following functions create an ODIText structure with a buffer of characters
of specified length.

ODIText* CreateITextWLen(ODScriptCode script, ODLangCode lang,
ODUByte* text, ODSize textLength);

ODIText* CreateIText(ODScriptCode script, ODLangCode lang,
ODUByte* text, ODSize textLength)

The following function sets the buffer size of the ODIText structure. If the input
ODIText pointer is kODNULL, this function is equivalent to the CreateITextClear
function.

ODIText* SetITextBufferSize(ODIText* text, ODSize bufferSize,
ODBoolean preserveContents);

Destruction A

The following function disposes of an ODIText structure and any memory
associated with it.

void DisposeIText(ODIText* text);

CookbookBook : UtilitiesAppendix Page 162 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

International Text (IText) 163

O
penD

oc U
tilities

A

The following function is the same as the DisposeIText function except that it
works on ODIText structure allocated on the stack.

void DisposeITextStruct(ODIText text);

Duplication A

The following function allocates and returns an exact copy of the ODIText
structure passed in.

ODIText* CopyIText(ODIText* original);

The following function is the same as the CopyIText function except that the
returned ODIText structure is allocated on the stack.

ODIText CopyITextStruct(ODIText* original);

Accessing attributes A

The following functions set and get the script code of the ODIText structure
passed in.

void SetITextScriptCode(ODIText* text, ODScriptCode script);

ODScriptCode GetITextScriptCode(ODIText* text);

The following functions set and get the language code of the ODIText structure
passed in.

void SetITextLangCode(ODIText* text, ODLangCode lang);

ODLangCode GetITextLangCode(ODIText* text);

The following function sets the length of the ODIText structure’s string length
field. If kODNULL is passed in as the input ODIText, the function is equivalent to
the CreateITextClear function.

ODIText* SetITextStringLength(ODIText* text, ODSize length,
ODBoolean preserveText);

CookbookBook : UtilitiesAppendix Page 163 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

164 International Text (IText)

ODIText* CreateIText(ODSize length);

The following function returns the string length of the ODIText structure passed
in.

ODULong GetITextStringLength(ODIText* text);

Accessing the string A

The following function returns a pointer to the raw text without allocating any
memory.

IMPORTANT

This function should be used with extreme caution
because the pointer returned belongs to the ODIText
structure. ▲

char* GetITextPtr(ODIText* text);

The following functions set the string of the ODIText structure with a C string.
Note that the SetITextString function is overloaded and can also take a Pascal
string.

void SetITextCString(ODIText* iText, char* cString);

void SetITextString(ODIText* iText, char* cString);

The following functions set the string of the ODIText structure with a Pascal
string.

void SetITextPString(ODIText* iText, StringPtr pString);

void SetITextString(ODIText* iText, StringPtr pString);

The following function sets the string of the ODIText structure with a buffer of
the specified length.

void SetITextText(ODIText* text, ODUByte* text, ODSize textLength);

CookbookBook : UtilitiesAppendix Page 164 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Memory Management (ODMemory) 165

O
penD

oc U
tilities

A

The following functions return a pointer to a C string which corresponds to the
string in the ODIText structure. If a string is passed in, the same string is used to
return the result. Otherwise, this function allocates memory for the returned
string. Note that the GetITextString function is overloaded and can also take
and return a Pascal string.

char* GetITextCString(ODIText* iText, char* cString);

char* GetITextString(ODIText* iText, char* cString);

char* GetCStringFromIText(ODIText* iText);

The following functions work like the GetITextCString function except that
they return a Pascal string.

StringPtr GetITextPString(ODIText*, Str255 pString);

StringPtr GetITextString(ODIText* i, StringPtr pString);

StringPtr GetPStringFromIText(ODIText* iText);

Memory Management (ODMemory) A

This section describes the OpenDoc memory manager utility, the Mac OS
implementation of which resides in the files ODMemory. h and
ODMemory.cpp.

OpenDoc includes a memory management utility that you can use for
allocating and manipulating memory as needed by your parts. On each
platform, the OpenDoc memory manager supplements the capabilities of the
platform’s own memory manager; you can use platform memory manager calls
alone, you can use the OpenDoc memory manager alone, or you can use both
as needed.

The OpenDoc memory manager is a fast and very space-efficient memory
allocator. It is a utility library used by OpenDoc but independent of it. The
OpenDoc memory manager’s only requirement is that its clients use a
procedural shared library mechanism, such as CFM on the Mac OS or DLL on
Windows.

CookbookBook : UtilitiesAppendix Page 165 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

166 Memory Management (ODMemory)

The OpenDoc memory manager works with but is not dependent upon SOM.
When both are installed, the OpenDoc memory manager takes over the SOM
memory management routines; in that case, calls to functions such as SOMMalloc
and SOMFree use the OpenDoc memory manager.

For a brief introduction to SOM, refer to Appendix B, “System Object Model.”
For information about the SOM memory manager, see SOMobjects Developer
Toolkit Users Guide and SOMobjects Developer Toolkit Programmers Reference
Manual from IBM.

Allocating Heaps A

A heap is a space in which blocks of memory of arbitrary size can be allocated.
All blocks allocated by the OpenDoc memory manager (other than handles) are
in one of its heaps. When the OpenDoc memory manager initializes itself, it
creates a heap for you; you can create additional heaps if you want to. You can
also delete heaps, and deleting a heap with blocks still in it is both legal and
faster than deleting all the blocks individually.

All storage used by the OpenDoc memory manager originally comes from the
operating system’s platform-specific memory manager. The OpenDoc memory
manager gets memory for its heaps from the platform memory manager in
large chunks (typically 32 KB or greater), and then subdivides these chunks as
needed to allocate blocks. When a heap runs out of room, the OpenDoc
memory manager asks the platform memory manager for another chunk, and
when the OpenDoc memory manager frees all blocks in a chunk, it returns the
entire chunk to the platform memory manager.

The data type that represents a heap (MemHeap) is opaque; no internal structure
is visible to you. You refer to heaps using pointers, and you can operate on
them only with the OpenDoc memory manager functions.

Memory for a heap can come from one of three places:

■ system memory (shared among all processes on the system)

■ application memory (local to the current process or OpenDoc document)

■ temporary memory (from a shared pool available to all applications)

On non–Mac OS platforms, application and temporary memory may be
identical; on the Mac OS, however, temporary memory is important because
very little application memory may be available in the fixed-size partition

CookbookBook : UtilitiesAppendix Page 166 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Memory Management (ODMemory) 167

O
penD

oc U
tilities

A

available to an OpenDoc process. For cross-platform code, therefore, it is better
to specify temporary memory.

These are the principal heap-manipulation functions provided by the OpenDoc
memory manager:

■ MMNewHeap creates a new heap with a given location and initial size (and
optionally a name). Whenever the heap runs out of space, it will request
more bytes from the platform memory manager.

■ MMDisposeHeap disposes of a heap, returning to the operating system all the
memory it has allocated. As a result, all blocks in the heap, and pointers to
those blocks, become invalid.

■ MMGetDefaultHeap returns a pointer to the current default heap. There is
always a default heap; memory allocation calls that don’t explicitly specify a
heap use the current default heap. (If you use SOM, this includes SOM’s
memory management calls.)

■ MMSetDefaultHeap makes a specified heap the default heap. In this way you
can change the default heap at any time.

Using multiple heaps can be convenient for your part editor, although it is not
quite as efficient as storing everything in one heap (because free memory in one
heap is not available to another). However, allocating a heap for temporary use
and then deleting it when done can help reduce memory fragmentation, since
deleting the heap leaves a small number of large free blocks, rather than a large
number of small ones.

Allocating Nonrelocatable Blocks A

Memory within a heap is allocated nonrelocatable blocks. The interface for
creating and operating on these blocks is similar to the ANSI C memory API,
which is similar to that used by SOM. In fact, the SOM memory calls are
rerouted to these routines, so that calling SOMMalloc, for example, is identical to
calling MMAllocate.

These are the principal block-allocation functions provided by the OpenDoc
memory manager:

■ MMAllocate allocates a new block of a specified size from the default heap
and returns a pointer to it. (The largest block that can be allocated is
0xFFFFFF, or 16 megabytes.) MMAllocateClear similarly allocates a block but

CookbookBook : UtilitiesAppendix Page 167 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

168 Memory Management (ODMemory)

also fills it with zeros. MMAllocateIn and MMAllocateClearIn also allocate
blocks but let you specify the heap.

■ MMReallocate changes the size of an already-allocated block and returns a
pointer to the new location of the block.

■ MMFree frees (disposes of) a previously allocated block.

■ MMBlockSize returns the size of a block.

■ MMGetHeap returns a pointer to the heap that owns a block.

■ MMSetIsObject sets the is-object flag of a block; MMIsObject queries the
is-object flag. If the flag is set, the OpenDoc memory manager assumes that
the block contains a valid SOM object. Some of the memory debugging calls
(see “Memory Debugging” on page 169) make use of this flag; you can also
use it for your own purposes.

You should clear the is-object flag before freeing any block because the
debugging configuration of the OpenDoc memory manager warns you if you
free a block containing an object. SOM objects that inherit from ODObject (the
OpenDoc root object class) automatically set the is-object flag when created and
clear it when deleted.

Allocating Relocatable Blocks (Handles) A

For convenience, the OpenDoc memory manager also provides operations for
allocating relocatable blocks, referenced via handles. These blocks are allocated
directly by the platform’s memory manager, not by the OpenDoc memory
manager, and they don’t reside in heaps managed by the OpenDoc memory
manager. However, you can still specify the same types of locations.

Because relocatable blocks are allocated by the platform’s memory manager, an
OpenDoc handle (type MMHandle) is the same as a platform-specific handle and
can be passed to operating system routines that take handles; likewise, a
handle allocated by an operating system routine can be passed to any of the
OpenDoc memory manager routines that take a parameter of type MMHandle.

These are the principal handle-allocation functions provided by the OpenDoc
memory manager:

■ MMAllocateHandle allocates a new relocatable block from the default heap
and returns a handle to it; MMAllocateHandleIn allocates a new relocatable
block from a specified heap. The source of the block (system, application, or

CookbookBook : UtilitiesAppendix Page 168 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Memory Management (ODMemory) 169

O
penD

oc U
tilities

A

temporary memory) is that of the indicated heap, even though the block is
not actually allocated inside that heap.

■ MMFreeHandle frees (disposes of) a previously allocated relocatable block.

■ MMCopyHandle makes an exact copy of a relocatable block and returns a
handle to the copy.

■ MMGetHandleSize returns the size of a relocatable block.

■ MMSetHandleSize changes the size of a relocatable block.

■ MMLockHandle locks a relocatable block, which prevents it from being
relocated by the operating system in response to other memory requests.
MMLockHandle returns a direct pointer to the contents of the block; you can
dereference this pointer to access the block’s contents as long as the block is
locked.

On the Mac OS platform a handle is just a pointer to a pointer to a block, and
the data in the block can be accessed at any time by doubly dereferencing
the handle. Other platforms, such as Windows, have a more opaque notion
of a handle. Therefore, to make your code cross-platform, you should always
use the pointer returned by the MMLockHandle function instead of
dereferencing your handles.

■ MMUnlockHandle and MMUnlockPtr unlock a relocatable block, given either a
handle to the block or a pointer to its contents.

IMPORTANT

Calls to MMLockHandle and MMUnlockHandle do not nest. The
first call to MMUnlockHandle unlocks the block (and
invalidates any pointers to its contents) no matter how
many times MMLockHandle has been called. ▲

Memory Debugging A

There are two configurations of the OpenDoc memory manager utility: regular
and debugging. During development, if you link with the debugging
configuration you can use its extra functions to help debug your code’s
memory management. These functions allow you to detect whether you are
passing illegal values to the OpenDoc memory manager or overwriting heap
data outside of blocks. You can also determine whether a given block is valid,
and you can collect statistics on a heap as a whole or on all blocks in a heap.

CookbookBook : UtilitiesAppendix Page 169 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

170 Memory Management (ODMemory)

Besides providing these extra routines, the debugging configuration also
performs more internal checking of function parameters and data structures;
this makes it slower but better able to detect problems.

These are the principal debugging functions provided by the debugging
configuration of the OpenDoc memory manager:

■ MMBeginMemValidation and MMEndMemValidation turn memory validation on
and off. When validation is on, newly allocated blocks are filled with 0xBB
(“Born”), and freed blocks are filled with 0xDD (“Dead”). Calls that take a
block pointer as a parameter verify that the block is valid; if it isn’t, they
warn you (typically via a low-level debugger) and the operation fails.

Memory validation can also be turned on and off via the ODDebug menu in
debugging builds of OpenDoc. (In the Mac OS implementation, this is a
submenu of the Apple menu.)
Note that you can nest memory-validation calls.

■ MMBeginHeapChecking and MMEndHeapChecking turn heap-checking on and off.
Heap-checking includes memory validation, but in addition most OpenDoc
memory manager calls scan through their heap to verify that its internal
structure is intact and valid. if it isn’t, they warn you (typically via a
low-level debugger) and the operation fails.

Heap checking can be very slow, especially if the heap contains a large
number of blocks. Memory-intensive operations like opening or closing a
storage object can take tens of times longer than normal. Nevertheless, heap
checking can be the best way to track down obscure bugs that destroy heaps.
Heap checking can also be turned on and off via the ODDebug menu in
debugging builds of OpenDoc. (In the Mac OS implementation, this is a
submenu of the Apple menu.)
Note that you can nest heap-checking calls.

■ MMDoesHeapExist determines whether the given heap is known to the
OpenDoc memory manager. If the heap was allocated by another process,
you may still be able to manipulate it with the platform-specific memory
manager, although that may be bad practice.

■ MMValidatePtr and MMValidateHandle validate a single block (normal or
relocatable.) If the pointer or handle passed in does not reference a valid
block, or if the block’s heap is corrupted, you are warned via a low-level
debugger.

CookbookBook : UtilitiesAppendix Page 170 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Object Handling (ODUtils) 171

O
penD

oc U
tilities

A

■ MMValidateObject verifies a block in the same manner as MMValidatePtr but
also verifies that the block’s is-object flag is set. It also verifies that the block
looks like a valid object to the SOM runtime system.

■ MMValidateHeap and MMValidateAllHeaps check either a single heap, or all
known heaps, for consistency. This can be a slow operation if there are large
numbers of blocks. If a heap is corrupted, you are warned via a low-level
debugger.

■ MMGetHeapInfo returns useful information about a heap, such as its name, its
size, the number of free bytes it contains, the number of blocks it contains,
and the number of objects (blocks with the is-object flag set) it contains.

■ MMWalkHeap Lets you examine every allocated block in a heap, using a pointer
you provide to a callback function that is called once for every block in the
heap.

Object Handling (ODUtils) A

This section describes the object-handling utilities defined in the files ODUtils.h
and ODUtils.cpp. These utilities are useful for handling OpenDoc objects,
especially reference-counted objects.

ODDeleteObject A

The ODDeleteObject macro deletes an object, which can be a SOM object or
another type of object (such as a C++ object), and sets the variable pointing to it
to kODNULL. This macro takes one parameter, which points to the object, as
follows:

ODDeleteObject(object)

ODReleaseObject A

The ODReleaseObject macro releases (instead of deleting) a reference-counted
SOM object and sets the variable pointing to it to kODNULL. This macro takes
parameters pointing to the SOM environment structure and the object, as
follows:

ODReleaseObject(ev, object)

CookbookBook : UtilitiesAppendix Page 171 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

172 Object Handling (ODUtils)

ODFinalReleaseObject A

The ODFinalReleaseObject macro is similar to ODReleaseObject, but it is meant
to be used to release the last reference to a reference-counted object. It asserts
that the object’s reference count is equal to 1 before calling its Release method.
This macro takes parameters pointing to the SOM environment structure and
the object, as follows:

ODFinalReleaseObject(ev, object)

ODAcquireObject A

The ODAcquireObject function increments the reference count of an object by 1
unless the object pointer passed into the function is kODNULL. The prototype of
this function appears as follows:

void ODAcquireObject(Environment* ev, ODRefCntObject* object);

ODSafeReleaseObject A

The ODSafeReleaseObject function releases a reference-counted object but
requires no environment parameter. This function will not throw an exception.
It is designed to be used in destructors, CATCH_ALL exception handling blocks,
and somUninit methods where no pointer to the environment structure is
available. The prototype of this function appears as follows:

void ODSafeReleaseObject(ODRefCntObject* object);

ODTransferReference A

The ODTransferReference function decrements one object’s reference count
while incrementing another object’s reference count. It is designed to be used in
situations such as when using setter methods where you need to acquire a
reference to one object while simultaneously releasing another.

This function ensures that the parameters do not point to the same object and
that neither is null. It is possible for this function to throw an exception in the
unlikely case that the Acquire or Release method call fails. The prototype of this
function appears as follows:

void ODTransferReference(Environment*, ODRefCntObject* oldObj,
 ODRefCntObject* newObj);

CookbookBook : UtilitiesAppendix Page 172 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Standard Type Input and Output (StdTypIO) 173

O
penD

oc U
tilities

A

ODCopyAndRelease A

The ODCopyAndRelease function returns a pointer to a copy of an object and
releases the original object. This function is overloaded: one form takes and
returns pointers to ODShape objects; the other takes and returns pointers to
ODTransform objects. This function is designed to transfer control of an object to
the caller, giving the caller permission to modify the object.

If the reference count of the original object is 1, the function is optimized
simply to return a pointer to the original object, thereby avoiding the
unnecessary expense of copying it. It is possible for this function to throw an
exception in the unlikely case that the GetRefCount or Release method call fails.
The prototypes of this function appear as follows:

ODShape* ODCopyAndRelease(Environment* ev, ODShape* shape);

ODTransform* ODCopyAndRelease(Environment* ev, ODTransform* transform);

ODObjectsAreEqual A

The ODObjectsAreEqual function returns kODTrue if both ODObject pointers
passed as parameters are not null and point to the same object.

IMPORTANT

Simply comparing the values of the pointers (as in the
expression a==b) is not sufficient in the presence of
distributed objects. Two pointers to the same remote object
may have different numeric values. ▲

The prototype of the ODObjectsAreEqual function appears as follows:

ODBoolean ODObjectsAreEqual(Environment* ev, ODObject* a, ODObject* b);

Standard Type Input and Output (StdTypIO) A

This section describes the utilities defined in the files StdTypIO.h and
StdTypIO.cpp. These utilities allow you to manipulate OpenDoc storage units
more simply and enable you to read and write various commonly used data

CookbookBook : UtilitiesAppendix Page 173 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

174 Standard Type Input and Output (StdTypIO)

types (such as integers, ISO strings, time values, storage unit references, and so
forth) in a standard storage format to facilitate document exchange.

The standard type input and output functions are designed to be used
independent of property and value type, and in many cases can even be used
to manipulate data in the middle of values. To do so, pass in a prefocused
storage unit with the offset set correctly, and pass in kODNULL for the
ODPropertyName and the ODValueType parameters.

Boolean Values A

The following function returns a Boolean value from a storage unit.

ODBoolean ODGetBooleanProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val)

Short Values A

The following functions get and set unsigned and signed 16-bit values.

ODUShort ODGetUShortProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val)

void ODSetUShortProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODUShort value)

ODSShort ODGetSShortProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val)

void ODSetSShortProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODSShort value)

Long Values A

The following functions get and set unsigned and signed 32-bit values.

ODULong ODGetULongProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val)

CookbookBook : UtilitiesAppendix Page 174 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Standard Type Input and Output (StdTypIO) 175

O
penD

oc U
tilities

A

void ODSetULongProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODULong value)

ODSLong ODGetSLongProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val)

void ODSetSLongProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODSLong value)

ISO String Values A

An ISO string (ODISOStr) is a string of 7-bit ASCII characters terminated by a
zero byte. The functions in this section get and set ISO string values in storage
units.

ODISOStr ODGetISOStrProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODISOStr value, ODULong* size)

void ODSetISOStrProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODISOStr value)

Type List Values A

The functions in this section get and set values of type ODTypeList. An
ODTypeList property value containing n elements begins with (n+1) offsets,
followed by n ISO strings with their null termination. The first n offsets identify
the starting positions of the corresponding ISO string. The last offset is always
equal to the size of the value and is immediately before the first character of the
first ISO string. For example, a property value representing an empty
ODTypeList object is four bytes long and contains offset four, signifying that
there are no ISO strings present.

void ODGetTypeListProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODTypeList* typeList)

CookbookBook : UtilitiesAppendix Page 175 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

176 Standard Type Input and Output (StdTypIO)

void ODSetTypeListProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODTypeList* typeList)

Text Values A

The following functions manipulate international text, Unicode text, and
traditional Mac OS text values.

void TradMacTextToUnicode(ODUByte* macText, ODULong macTextLength,
ODUShort** unicodeText, ODULong* uniCodeBufferLength);

void UnicodeToTradMacText(ODUShort* unicodeText,
ODULong uniCodeTextLength,
ODUByte** macText, ODULong* macTextLength);

ODIText* UnicodeToIText(ODIText* iText, ODUShort* unicodeText,
ODULong unicodeTextLength);

In the ODGetITextProp function, if the iText parameter is kODNULL, a variable of
type ODIText is allocated and passed back. If not, the _buffer field of the text
within the iText structure is deallocated and a new _buffer is allocated and
filled. If no value is passed in the ODPropertyName and ODValueType parameters,
the function returns kODNULL.

ODIText* ODGetITextProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODIText* iText)

In the ITextToUnicode function, storage passed back must be deallocated with
the ODDisposePtr function.

void ITextToUnicode(ODIText* iText, ODUShort** unicodeText,
ODULong* unicodeTextLength);

void ODSetITextProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODIText* iText)

CookbookBook : UtilitiesAppendix Page 176 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Standard Type Input and Output (StdTypIO) 177

O
penD

oc U
tilities

A

Time Values A

The following functions get and set values of type ODTime.

ODTime ODGetTime_TProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val)

void ODSetTime_TProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODTime value)

Geometric Values A

The following functions get and set values of type ODPoint, ODRect, ODPolygon,
and ODMatrix.

ODPoint* ODGetPointProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODPoint* value)

void ODSetPointProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODPoint* value)

ODRect* ODGetRectProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODRect* value)

void ODSetRectProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODRect* value)

ODPolygon* ODGetPolygonProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODPolygon* value)

void ODSetPolygonProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
const ODPolygon* value)

CookbookBook : UtilitiesAppendix Page 177 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

178 Standard Type Input and Output (StdTypIO)

ODMatrix* ODGetMatrixProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODMatrix* value)

void ODSetMatrixProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODMatrix* value)

Storage Unit Reference Values A

The following functions get and set strong and weak storage unit references.

ODID ODGetStrongSURefProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val)

void ODSetStrongSURefProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODID id)

ODID ODGetWeakSURefProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val)

void ODSetWeakSURefProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop, ODValueType val,
ODID id)

Icon Family Values A

The functions in this section get and set values of type ODIconFamily. The
ODIconFamily type is platform-specific, so the functions have platform-specific
implementations. The following values are used for the iconMask parameter.

enum {
kAllIconsMask = 0xFFFFFFFF, // All icons usable on this platform
kBWIconsMask = 0x0421 // 1 bit deep, 16,32,64 pixels wide

};

Expected values for the ODValueType parameter begin with
OpenDoc:Type:IconFamily: followed by the name of a platform. The platform
names are defined in StdTypes.idl as kODIconFamilyMac, kODIconFamilyWin,

CookbookBook : UtilitiesAppendix Page 178 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Storage (StorUtil) 179

O
penD

oc U
tilities

A

kODIconFamilyOS2, and kODIconFamilyAIX. If you specify only kODIconFamily, the
type of the current platform is used.

ODIconFamily ODGetIconFamilyProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop,
ODValueType val, ODULong iconMask);

void ODSetIconFamilyProp(Environment* ev,
ODStorageUnit* su, ODPropertyName prop,
ODValueType val, ODIconFamily iconFamily,
ODBoolean deleteOtherPlatformIcons);

Storage (StorUtil) A

This section describes the utilities defined in the files StorUtil.h and
StorUtil.cpp. These utilities wrap the GetData methods of the class
ODStorageUnit, letting you pass in direct pointers to data buffers instead of an
ODByteArray wrapper.

Storage Utility Functions A

The storage utility defines the functions described in the following sections.

StorageUnitGetValue A

The StorageUnitGetValue function takes as a parameter a pointer to an
OpenDoc storage unit, the SOM Environment variable, the buffer size, and a
pointer to the buffer. The function returns the number of bytes actually read.
The prototype of this function appears as follows:

ODULong StorageUnitGetValue(ODStorageUnit* su, Environment* ev,
ODULong size, ODPtr buffer);

StorageUnitViewGetValue A

The StorageUnitViewGetValue function takes as a parameter a pointer to an
OpenDoc storage unit view object, the SOM Environment variable, the buffer

CookbookBook : UtilitiesAppendix Page 179 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

180 Temporary Objects (TempObj)

size, and a pointer to the buffer. The function returns the number of bytes
actually read. The prototype of this function appears as follows:

ODULong StorageUnitViewGetValue(ODStorageUnitView* suv,
Environment* ev, ODULong size, ODPtr buffer);

Temporary Objects (TempObj) A

This section describes the template utilities defined in the files TempObj.h and
TempObj.cpp. These utilities provide exception-safe temporary object
references, and they handle reference counting automatically.

These are simple template classes that act as a transparent wrapper around an
OpenDoc object pointer. The temporary object can be used wherever a pointer
to the OpenDoc object would be used. When the temporary object goes out of
scope, the object it wraps is either deleted or released (depending on the
temporary object class used).

Need for Temporary Objects A

When writing OpenDoc-based code, you often need to create temporary objects
that later need to be freed or to acquire temporary references to
reference-counted objects that later need to be released. In these situations, it is
easy to forget to free the object or release the reference. It is also possible for an
exception to be thrown while the temporary is active, in which case you can’t
free the object or release the reference unless you include more complicated
exception-handling in your code. In these cases, it is easy to create a memory
leak or reference-counting error.

The temporary objects defined in the temporary-objects utility are
implemented as stack-based C++ objects whose destructors are called
automatically whenever they go out of scope, either by exiting a block or via an
exception. This scheme is implemented in the exception-handling utility as the
Destructo class, from which the temporary object template classes inherit.

CookbookBook : UtilitiesAppendix Page 180 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Temporary Objects (TempObj) 181

O
penD

oc U
tilities

A

Using Temporary Objects A

To use this utility, just include the file TempObj.h in your source files and link
TempObj.cpp into your libraries. This gives you access to the following classes:

TempODFrame
TempODPart
TempODShape
TempODStorageUnit
TempODTransform
TempODWindow

TempODFocusSetIterator
TempODFrameFacetIterator

Note
Iterators are not reference-counted, so the classes
TempODFocusSetIterator and TempODFrameFacetIterator
delete the iterator object at the end instead of releasing it. ◆

If your compiler supports C++ templates, you can define a symbol
_USE_TEMPLATES_ before including TempObj.h. This will ensure that the header
uses templates to implement these classes. This might make the
implementation more efficient, and it also makes it much easier to extend the
mechanism to new classes. If you can’t or don’t want to use templates, just
don’t define this symbol; the default is that the classes are implemented
without using templates.

Pitfalls A

The biggest mistake you can make in using this utility is forgetting that the
object is always released. This can cause a problem if you need to use the object
as the return value of a function:

ODShape *snod(ODFrame *frame) {
TempODShape s = frame->GetFrameShape(ev,kODNULL);
DoSomething(s);
return s;

}

The ODShape is released before it’s returned, when the destructor of s is called.
This is bad news, since the function will return either a pointer to a deleted

CookbookBook : UtilitiesAppendix Page 181 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

182 Temporary Objects (TempObj)

object or to an object whose reference count is one too low. Either case is likely
to cause a crash.

It’s still nice to use a TempODShape in this function, for safety in case DoSomething
throws an exception. You just want to tell s not to release itself when it’s being
returned. You can do this by setting the shape to kODNULL before returning it:

ODShape *snod(ODFrame *frame) {
 TempODShape s = frame->GetFrameShape(ev,kODNULL);
 DoSomething(s);
 ODShape *temp = s;
 s = kODNULL; // s will not be released by the destructor now
 return temp;
}

Of course, this is a kludge in that you have to store the value of s in a
temporary variable to keep it from being lost. Instead, you can use a
convenience method called DontRelease that will set the reference to null but
return its previous value:

ODShape *snod(ODFrame *frame) {
 TempODShape s = frame->GetFrameShape(ev,kODNULL);
 DoSomething(s);
 return s.DontRelease(); // Note that "." is used, not "->"
}

Using Temporary Iterators A

The temporary-objects utility contains some extra classes that are temporary
objects for OpenDoc iterator classes. In addition to managing the automatic
deletion of the iterator object itself, they also simplify the process of using the
iterator and shrink the resulting code. The following example illustrates use of
these temporary iterator classes:

extern void DoSomethingWith(ODSnod*);
extern void OrSomethingWith(ODSnod*);
...
ODBazz *bazz;
...
for(TempODSnodIterator iter(ev,bazz); iter.Current(); iter.Next())
{

CookbookBook : UtilitiesAppendix Page 182 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Temporary Objects (TempObj) 183

O
penD

oc U
tilities

A

DoSomethingWith(iter);
OrSomethingWith(iter.Current());

}

Within the loop you can use iter.Current() or just iter to refer to the current
object to which the iterator is pointing. You can also use the following syntax to
control the iteration loop because the iterator itself can be used as a synonym
for its current object, and the ++ operator is the same as calling Next:

for(TempODSnodIterator iter(ev,bazz); iter; iter++)

Adding New Temporary Classes A

There are other OpenDoc classes for which you might want to have temporary
objects available. You can define your own temporary object classes using the
temporary-objects utility. This is especially easy if your compiler supports
templates.

Adding New Classes Using Templates A

If you’re using templates (by defining _USE_TEMPLATES_ before including
TempObj.h), you can declare a temporary reference to any type of
reference-counted object by using the class TempRef<className> in the following
manner:

TempRef<ODDraft> su = doc->AcquireDraft(ev);

You can also use temporary instances of objects that are not reference counted
by using TempObj<class> in the following manner:

TempObj<ODPeanutIterator> iter = peanut->GetIterator(ev);

Adding New Classes Without Using Templates A

If you’re not using templates, you’ll need to do some more work, adding
several weird looking #define and #include statements. You can add these to
the existing TempObj files, or put them in your own files. To add your own
temporary class to the TempObj files, perform the following steps:

1. Open TempObj.h and find the correct location.

CookbookBook : UtilitiesAppendix Page 183 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

184 Temporary Objects (TempObj)

Scroll down to the comment that reads // Instantiations of TempObj and
TempRef. Add your own if necessary. Under the line reading #else /* not
_USE_TEMPLATES_*/, find a series of groups of lines, each group of which
looks like this:

#define _T_ ODFrame
#define _C_ TempODFrame
#include "TempRef.th"

2. Add another one of these groups.

You can do this in TempObj.h, or in a separate header of your own. Change
T to the OpenDoc class for which you want to make a temporary class.
Change _C_ to the name of the temporary-reference class. If the OpenDoc
class is not reference counted, include TempObj.th instead of TempRef.th.

3. Open TempObj.cpp and find the correct location.

Scroll down to the comment that reads // Define the non-inline methods
of the various template classes. Below find another list of #define and
#include statements like the ones shown above.

4. Add another of these groups.

You add another group in the same manner as in TempObj.h.

5. Recompile TempObj.cpp.

If you put the declarations in a separate utility library and not directly in
your project, you’ll need to build the library first. If TempObj.h is
precompiled, the first thing you must do is rebuild the precompiled header.

Type-Checking Errors A

If, after adding a new class, you get a type-mismatch error in TempObj.h
(probably at line 139) or in TempObj.th or TempRef.th, this indicates that you
are trying to use TempObj with a class that is not a subclass of ODObject, or
TempRef with a class that is not a subclass of ODRefCntObject. This mismatch can
happen even if the class is correct if the compiler hasn’t seen the declaration of
the class before the declaration of the temporary. In other words, the following
is wrong:

class ODSnod;
TempRef<ODSnod> ref =;
#include "ODSnod.h"

CookbookBook : UtilitiesAppendix Page 184 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Resource Handling (UseRsrcM) 185

O
penD

oc U
tilities

A

At the time that the compiler instantiates the template for ODSnod, it does not
know anything about the class, such as whether it is a subclass of
ODRefCntObject, so it will therefore report type-checking errors. You can avoid
this problem by including the header for ODSnod before using the TempRef class.

Resource Handling (UseRsrcM) A

This section describes the utilities defined in the files UseRsrcM.h and
UseRsrcM.cpp. These utilities enable you to access resources from your part
editor’s resource fork.

Using Mac OS resources from an OpenDoc part handler is a little more difficult
than from a regular Mac OS application. Part handlers are implemented as
shared libraries, and the Code Fragment Manager does not automatically open
the resource fork of a shared library when the library is in use. Leaving the
resource fork open all the time would cause resource conflicts among libraries
and their host applications, but opening it every time a library is called would
have too much overhead. Instead, a code fragment is responsible for
remembering where its file lives, for opening the resource fork when it needs to
access resources, and for closing it when it’s done.

Setting Up the Build System A

To use these resource utilities, you need to add the utility file UseRsrcM.cpp to
your project if you use a project-file development system, or add it to a
makefile if you use MPW.

You also need to tell the build system you have a CFM initialization routine
(described in the next section). In MPW, you use the -init name command line
flag of the ILink or PPCLink tool. The routine can be called anything you like,
but typically you append CFMInit to the part editor name, for example,
SamplePartCFMInit.

Initializing Your Library A

If your part editor needs to access its resources (as almost any part handler
does) you need to provide a CFM initialization routine. This routine is called
by the Code Fragment Manager when your library is instantiated—that is,

CookbookBook : UtilitiesAppendix Page 185 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

186 Resource Handling (UseRsrcM)

whenever the first connection is made to your library by a process. For a part
editor, this occurs the first time an instance of your part is created. The
initialization routine is the very first piece of your code to be called.

The initialization routine is passed a pointer to an initialization block. This
block contains an FSSpec field that gives the location on disk of the part handler
library. In the implementation of your initialization routine you need to pass a
pointer to the initialization block to the function InitLibraryResources so it can
open the library’s resource fork and keep it around for when you need to
access it.

You should also provide a termination routine, which the Code Fragment
Manager calls when your part editor library is unloaded. (Typically this
happens when no instances of classes defined in your library are in memory
and OpenDoc decides to purge memory to free up space.) The termination
routine should call CloseLibraryResources to close your library’s resource fork
and free up the memory occupied by its resource map (and any resources from
it that haven’t been purged or released.)

Bare-bones initialization and termination routines look like this:

#ifndef __USERSRCM__
#include "UseRsrcM.h"
#endif

#ifndef __FRAGLOAD__
#include <FragLoad.h>
#endif

extern "C" pascal OSErr MyPartCFMInit(InitBlockPtr);

OSErr MyPartCFMInit (InitBlockPtr initBlkPtr)
{
 return InitLibraryResources(initBlkPtr);
}

void MyPartCFMTerminate()
{
 CloseLibraryResources();
}

CookbookBook : UtilitiesAppendix Page 186 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Resource Handling (UseRsrcM) 187

O
penD

oc U
tilities

A

The call to InitLibraryResources opens your library’s resource fork but does
not put it in the resource chain. This effectively makes it invisible to the
Resource Manager, but allows it to be activated at a moment’s notice. The
termination routine closes the resource fork and releases any memory it may
have been using.

Note
The initialization routine is also a good place to do other
one-time initializations, such as setting up global variables.
A common thing to do is to call the Mac OS Toolbox
routine Gestalt to determine whether various system
services are available, and to store the results in global
Boolean variables for later use. Keep in mind, though, that
the initialization routine is not called every time a part is
instantiated—it is called only when the library is first
linked into a process. ◆

Of course, simply declaring these routines is not enough. You need to tell the
linker that these are special CFM routines. See the above section “Setting Up
the Build System” on page 185, as well as your development tools’
documentation, for full details.

For more information on initialization and termination routines, see Inside
Macintosh: PowerPC System Software.

Accessing Your Library’s Resources A

Before accessing your library’s resources (directly or indirectly), call
BeginUsingLibraryResources. This routine activates your library’s resource fork
and makes it the current resource file. (It also returns a magic 32-bit value that
you should save for later.) You may then safely call Resource Manager routines
like Get1Resource or Count1Resources, or Toolbox routines that indirectly call
the Resource Manager, such as GetMenu or GetNewWindow.

As soon as possible, deactivate your library’s resource fork by calling
EndUsingLibraryResources, passing in the magic 32-bit value you received from
BeginUsingLibraryResources. Leaving the resource fork active for too long can
cause conflicts with other part editors (or OpenDoc subsystems) that need to
use resources. In particular, you should not make any OpenDoc API calls while
your resource fork is active, or (even worse) return from a call to your part
without deactivating it.

CookbookBook : UtilitiesAppendix Page 187 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

188 Resource Handling (UseRsrcM)

Activating and deactivating your resource fork is a very quick process, without
much overhead. Don’t worry about it slowing down the system.

Consider the following code fragment:

ODSLong x = BeginUsingLibraryResources();
fMenu = GetMenu(kMyMenuID);
EndUsingLibraryResources(x);
fMenuBar->AddMenuLast(ev,kMyMenuID, fMenu, fPart);

After calling EndUsingLibraryResources, any resources that have been loaded
into memory are still there. However, since your resource file is not active and
is not in the resource chain, you can’t perform any resource operations on
resources in it, such as LoadResource, GetResInfo or ReleaseResource. Before you
can call any Resource Manager routines on a resource you’ve loaded, you need
to call BeginUsingLibraryResources again.

In particular, you must activate the resource file before releasing the resource,
as this example shows:

ODSLong x = BeginUsingLibraryResources();
ReleaseResource((Handle)fMenu);
EndUsingLibraryResources(x);

You can’t call ReleaseResource when your resource fork is inactive. And you
can’t just call DisposeHandle on the resource, or the Resource Manager will
encounter problems.

For C++ Users A

If you use C++, there is an alternative to using these calls, based on the
standard C++ idiom of a lightweight stack-based class whose constructor sets
up a state and whose destructor removes it. The class is called
CUsingLibraryResources. Declaring an instance of CUsingLibraryResources
activates your resource fork, as in this example:

{
CUsingLibraryResources using;
fMenu = GetMenu(kMyMenuID);

}

fMenuBar->AddMenuLast(ev,kMyMenuID, fMenu, fPart);

CookbookBook : UtilitiesAppendix Page 188 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Resource Handling (UseRsrcM) 189

O
penD

oc U
tilities

A

When the object goes out of scope (when the flow of control leaves the
enclosing block) the resource fork is deactivated.

One nice aspect of the object-oriented model is that, unlike in the procedural
model, you can return or break from a block containing a
CUsingLibraryResources. The return or break statement will cause the object to
go out of scope, and the compiler automatically calls the destructor.

A CUsingLibraryResources object is a Destructo (defined in the file Except.h)
and so will automatically be destroyed if it goes out of scope as a result of an
exception. This means that your resource fork automatically is deactivated if an
exception is thrown out of the block: a very desirable thing to have happen. For
this reason, if you use C++, it’s preferable to use this form instead of using
BeginUsingLibraryResources and EndUsingLibraryResources.

Note
Remember, the Resource Manager only loads one copy of a
resource into any single process. However, any number of
instances of your part may be active in a single document
process. This means that, unless you explicitly use the
ODReadResource utilities described in the next section, all
instances of your part in a single document have to share
the resources. ◆

A common error is for a part to load a resource and then later release it,
perhaps in its destructor or somUninit method. The problem is that other
instances of the part might still exist in the document, and they might also have
loaded the same resource. After the first part releases the resource, the other
parts have invalid dangling handles and will probably end up reading garbage
or corrupting the heap if they try to use the resource thereafter.

A good solution is to treat resources as global variables. Note that they have
the same scope (per process) as your part handler library’s global variables.
This means that you can safely load a resource and assign the handle to a
global variable, which can then be shared by all active instances of your part. If
you release the resource, perhaps in your Purge method, set the global variable
to kODNULL so that other instances of your part know it’s been disposed of. They
can then load the resource again the next time they read it. A more advanced
variation on this is to keep a reference count on a resource and release the
resource when the reference count goes to zero.

CookbookBook : UtilitiesAppendix Page 189 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

190 Resource Handling (UseRsrcM)

Resource-Loading Utilities A

There are some resource-loading utilities you might want to use. These have
the advantage that they don’t load the resources into the application heap
(which has very little free space in an OpenDoc environment) and that the
resource data isn’t shared between all instances of your part. They also take
care of activating and deactivating your resource file automatically.

ODReadResource and ODReadNamedResource are comparable to GetResource and
GetNamedResource, except for the following differences:

■ They explicitly load the resource out of your part editor.

■ The result is a detached handle, which means you get a new copy every time
you call these routines. It also means you can dispose of the handle normally
using ODDisposeHandle.

■ They put the handle in temporary memory. (It was allocated via
ODNewHandle.)

■ They throw exceptions if any errors occur. In particular, they throw
resNotFound if the resource is not found.

ODReadResourceToPtr and ODReadNamedResourceToPtr are similar, except that
they load the resource data into a nonrelocatable block and return a pointer to
it. (The block is allocated via ODNewPtr and should be disposed of via
ODDisposePtr or MMFree.) These functions are obviously not appropriate for
Toolbox-defined resource types like 'PICT' that have to be referenced via
handles, but for your own types it can be preferable since the memory
allocation is more efficient and access to the data requires only single
indirection.

ODGetString reads the contents of a 'STR ' resource from your part editor into a
Str255 variable that you pass in. It throws an exception (usually resNotFound) if
the resource can’t be read.

ODGetIndString reads a string from a 'STR#' resource from your part editor into
a Str255 variable that you pass in. It is like GetIndString except that it
automatically activates and deactivates your resource fork and throws an
exception if the resource can’t be found.

CookbookBook : UtilitiesAppendix Page 190 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

Window Utilities (WinUtils) 191

O
penD

oc U
tilities

A

Window Utilities (WinUtils) A

This section describes the utilities defined in the files WinUtils.h and
WinUtils.cpp. When you’re reopening a window at document-launch time, you
can use these utilities to retrieve the window properties stored with the root
frame of any persistently stored window.

Retrieving Window Properties A

When a saved document is opened, OpenDoc retrieves the root frame of each
saved window and calls the Open method of the part belonging to that frame,
passing the frame. The part is responsible for recreating the platform window
and creating an ODWindow object using the RegisterWindowForFrame method.

The properties of the window are saved in a storage unit referenced from the
root frame. The utility functions BeginGetWindowProperties and
EndGetWindowProperties can be used to retrieve these properties without using
the storage system API directly.

Using the Window Utilities A

The window utilities functions allow a part editor to obtain the properties
necessary to create a window from the storage annotation on a root frame. The
BeginGetWindowProperties function returns kODTrue if the annotation exists and
fills in the properties structure. The EndGetWindProperties function releases the
frame specified in the sourceFrame field of the structure.

The following code fragment illustrates use of the window utilities:

WindowProperties props;
ODWindow* window = kODNULL;

if (BeginGetWindowProperties(ev, frame, &props))
{

ODPlatformWindow platformWindow =
NewCWindow(kODNULL,

&(props.boundsRect),

CookbookBook : UtilitiesAppendix Page 191 Thursday, December 7, 1995 4:59 PM

A P P E N D I X A

OpenDoc Utilities

192 Window Utilities (WinUtils)

props.title,
kODFalse,
props.procID,
(WindowPtr)-1L,
props.hasCloseBox,
props.refCon);

window = fSession->GetWindowState(ev)->
RegisterWindowForFrame(ev, platformWindow,

frame,
props.isRootWindow,// keeps draft open
kODTrue,// is resizable
kODFalse,// is floating
kODTrue,// shouldSave
props.sourceFrame);

EndGetWindowProperties(ev, &props); // release source frame
}

CookbookBook : UtilitiesAppendix Page 192 Thursday, December 7, 1995 4:59 PM

Features of the System Object Model

193

A P P E N D I X B

B

System Object Model B

This appendix presents an introduction to the System Object Model (SOM), the
standard object infrastructure upon which the OpenDoc component software
architecture is built. Developed by IBM Corporation, SOM is a programming
technology for building, packaging, and manipulating object-oriented class
libraries.

For complete documentation of SOM, see the

SOMobjects Developer Toolkit Users
Guide

 and

SOMobjects Developer Toolkit Reference Manual

 from IBM.

Features of the System Object Model B

SOMobjects

 for the Mac OS is the Mac OS implementation of the System
Object Model (SOM). It underlies the Mac OS implementation of OpenDoc.
SOMobjects for the Mac OS comprises several components, the most important
of which are

■

a kernel, which implements the basic SOM runtime environment

■

SOM class libraries, which augment the runtime environment

■

the SOM compiler, which translates SOM’s Interface Definition Language
(IDL) object specifications into a target language such as C++

SOM is not a complete implementation language or programming system.
Instead, SOM complements such languages, providing a number of
advantages, such as

■

language neutrality, so that objects can be implemented in different
programming languages yet work together

■

binary compatibility, solving the “fragile base-class problem,” which
requires client programs to be recompiled whenever the class library on
which they depend is modified

■

cross-platform compatibility, because SOM is an emerging industry standard
implemented on most major platforms

Figure B-0
Listing B-0
Table B-0

This document was created with FrameMaker 4.0.4

CookbookBook : SOMAppendix Page 193 Thursday, December 7, 1995 4:59 PM

A P P E N D I X B

System Object Model

194

Development Process

By virtue of these features, SOM enables greater code reuse for object libraries
such as OpenDoc and greater flexibility for application programmers.

Development Process B

To have the advantages of SOM, you must define objects with well-defined
interfaces separated from their implementations. The SOM compiler enables
you to do this. At runtime, the SOM kernel supports execution of such objects.

You define the interface to a SOM object in the SOM Interface Definition
Language (IDL) described in the next section. However, you implement the
methods of a SOM object and write client programs of the object in a
full-featured programming language such as C++, the language used for
SamplePart part editor.

After you define a SOM class in IDL, you run the SOM compiler on the IDL
file. The SOM compiler produces three files in a target language, for which the
SOM compiler must have a language-specific emitter. SamplePart uses the C++
emitter. The compiler output files are a usage binding, an implementation
binding, and an implementation template file. The usage binding file
(extension .xh) is similar to a regular C++ header file; client programs that use
the SOM class include the usage binding file. The implementation binding file
(extension .xih) is private to the SOM class and included in the class
implementation; it contains macro definitions enabling the class
implementation to have access to its instance variable and to call superclass
methods. The implementation template file (extension .cpp) is similar to a
regular C++ implementation file; as emitted by the SOM compiler, it contains
stub function definitions for each method declared in the IDL file. Writing in
C++, you must fill in the function bodies for each new and overridden method
in the class.

Interface Definition Language B

The SOM interface definition language (IDL) describes the interface of a SOM
object in a set of declarations. Generally, these declarations can specify
constants, type of the object, attributes (instance variables), operations
(methods), exceptions, and module (which scopes the object).

CookbookBook : SOMAppendix Page 194 Thursday, December 7, 1995 4:59 PM

A P P E N D I X B

System Object Model

Interface Definition Language

195

S
ystem

 O
bject M

odel

B

In SOM, the runtime entities that provide services to clients are always objects,
which contain methods and instance variables (also called

fields

 or

attributes

).
Client programs can call the methods to request whatever services the object
provides, and the object uses its instance variables to store its state information.
The interface to the object, which is expressed in IDL, describes what clients
must know to use the object’s services. Every SOM object is an instance of a
single SOM class, but the implementation language of the object need not
support the class concept.

The SOM Interface of SamplePart B

The OpenDoc class that represents a part editor is named

ODPart

. It is a SOM
class, as are all the classes in the OpenDoc class library. All part editors are built
around a subclass of

ODPart

. The SamplePart part editor, however, incorporates
a scheme by which the part’s SOM interface is largely hidden from the
programmer.

SamplePart has only one SOM class, a subclass of

ODPart

 named

som_SamplePart

, referred to as the

SOM wrapper class

. This SOM class overrides
all

ODPart

 methods, although SamplePart implements only some of them. For
those methods that SamplePart implements, the SOM wrapper class methods
delegate the implementation to a C++ class named

som_SamplePart

.

The SOM class

som_SamplePart

 is defined in IDL. The SOM class methods
merely call corresponding methods in the C++ class, which is named

SamplePart

. For

ODPart

 methods that SamplePart does not implement, the SOM
class override method bodies are empty. They are provided so that you can
extend SamplePart simply by adding a call to a method in a C++ class.
Therefore, you do not need to revise the SOM class IDL interfaces and use the
SOM compiler to extend SamplePart.

The remainder of this appendix describes the artifacts of IDL that appear in the
definition of

som_SamplePart

 class in the file som_SamplePart.idl.

The Class Definition B

SOM provides a scoping mechanism to group objects into modules; the
definition of the

SamplePart

 class declares it to belong to the

SampleCode

module. The interface statement of the

som_SamplePart

 object shows that it
inherits from

ODPart

. Listing B-1 shows the interface statement.

CookbookBook : SOMAppendix Page 195 Thursday, December 7, 1995 4:59 PM

A P P E N D I X B

System Object Model

196

Interface Definition Language

Listing B-1

Interface statement

module SampleCode
{

interface som_SamplePart : ODPart
{

The next part of the interface definition is the implementation section, which is
protected by an

#ifdef __SOMIDL__

 compiler directive to maintain compatibility
with pre-SOM versions of IDL. The

majorversion

 and

minorversion

 statements
specify a combined version number which the SOM compiler can use to ensure
compatibility among different versions of the

som_SamplePart

 class. The

functionprefix

 identifier customizes the names of the implementation
functions in the .cpp file. Next, the definition lists all of the methods that

som_SamplePart

 overrides.

Listing B-2 shows the beginning of the implementation section.

Listing B-2

Implementation section

majorversion = 1; minorversion = 0;

functionprefix = som_SamplePart__;
override:

//# ODObject methods
somInit,
somUninit,
AcquireExtension,
HasExtension,
Purge,
ReleaseExtension,

//# ODRefCountedObject methods
Release,

//# ODPersistentObject methods.
CloneInto,
Externalize,
ReleaseAll,

//# ODPart methods
AbortRelinquishFocus,

CookbookBook : SOMAppendix Page 196 Thursday, December 7, 1995 4:59 PM

A P P E N D I X B

System Object Model

Interface Definition Language

197

S
ystem

 O
bject M

odel

B

AcquireContainingPartProperties,
AdjustBorderShape,

...

The final portion of the implementation section, which is private to the

som_SamplePart

 object, contains two parts: a

passthru

 statement and
declarations for the

som_SamplePart

 object’s instance variable. The

passthru

statement directs the SOM compiler to write specified information directly into
a specified output file. In this case, the information is a forward declaration for
the class type

SamplePart

, which is required by the C++ compiler that will
process the output file. The

passthru

 statement specifies the output file to be
the implementation binding file with extension .xih. The declaration of the

som_SamplePart

 object’s instance variable follows, specifying the variable’s data
type and identifier.

Listing B-3 shows the final portion of the

som_SamplePart

 class interface
definition.

Listing B-3

Last section of the

som_SamplePart

 class definition

#ifdef __PRIVATE__
passthru C_xih =

"class SamplePart;";

SamplePart* fPart;

#endif //__PRIVATE__
};

#endif //__SOMIDL__
};

};

SOM class definitions can also include a

releaseorder

 statement to maintain
binary compatibility for the SOM class, although

som_SamplePart

 does not need
or use the feature. The

releaseorder

 statement specifies the order in which the
SOM compiler must incorporate the methods in the class’s data structure. The

releaseorder

 specification appears in a private form, protected by an

#ifdef
__PRIVATE__

 compiler directive, and a public form for clients, which reserves

CookbookBook : SOMAppendix Page 197 Thursday, December 7, 1995 4:59 PM

A P P E N D I X B

System Object Model

198

Interface Definition Language

space for the correct number of methods without naming them. Listing B-4
shows an example of a

releaseorder

 statement.

Listing B-4

releaseorder

 statement

releaseorder:
#ifdef __PRIVATE__

method1, method2, method3;
#else

reserved1, reserved2, reserved3;

Implementation Template B

The SOM compiler generates an implementation template for each method
declared in a SOM class. You must fill in the complete implementation for each
method in your class. The SOM compiler puts certain macro invocations and
other artifacts into these stub method definitions, which you can see by
examining the emitted implementation template file (extension .cpp).

Define and Include Directives B

Because the implementation template file is the primary source file for the SOM
object declared in the corresponding IDL file, the SOM compiler generates a
compiler symbol specifying the module name (if any is declared in the IDL
specification), the class name, and the words

Class_Source

, all separated by
underscore characters. This directive forces a one-to-one correspondence
between the IDL class specification and its implementation.

Listing B-5 shows the

som_SamplePart

 class source define directive.

Listing B-5

Class source define directive

#define SampleCode_som_SamplePart_Class_Source

The include directives in the implementation template file include the
implementation binding or private header file (extension .xih) only for the
same class whose implementation file this is. The private implementation file is

CookbookBook : SOMAppendix Page 198 Thursday, December 7, 1995 4:59 PM

A P P E N D I X B

System Object Model

Interface Definition Language

199

S
ystem

 O
bject M

odel

B

generated by the SOM compiler. It contains macros that give access to instance
variables and invoke superclass methods.

Include directives for other SOM classes used in the implementation code
include the usage binding or public header file (extension .xh) generated for
those classes. For non-SOM classes defined in C++, such as

SamplePart

, the
implementation template file includes the regular C++ header file (extension
.h).

Function Prototype B

The prototype of each stub method definition generated by the SOM compiler
includes several symbols defined in the implementation binding file. Generally,
you do not need to worry about these symbols because the SOM compiler
simply does the right thing.

Listing B-6 shows a typical SOM-generated function prototype with parameter
list that appears in the

som_SamplePart

 implementation template file.

Listing B-6

Typical SOM function prototype

SOM_Scope void
SOMLINK som_SamplePart__InitPart

(
SampleCode_som_SamplePart* somSelf,
Environment* ev,
ODStorageUnit* storageUnit,
ODPartWrapper* partWrapper

)

The symbol SOM_Scope is defined in the implementation binding file as extern C
to generate correct language bindings with parameters in the proper order. The
term void is the return value of the method. The symbol SOMLINK is defined by
SOM; it is a preprocessor directive to help the linker, and its value is system
specific. The method name appears next appended to its function prefix value,
which is defined in the IDL file, as som_SamplePart__. The parameter list is
described in the following section.

CookbookBook : SOMAppendix Page 199 Thursday, December 7, 1995 4:59 PM

A P P E N D I X B

System Object Model

200 Interface Definition Language

Parameter List B

The stub function implementations include two standard parameters in every
signature: the self-pointing parameter and the environment parameter. The IDL
descriptions of some SOM classes also include a context specification, causing a
third standard parameter to be generated, but it does not appear in
som_SamplePart. Other parameters are specific to the individual method.

The self-pointing parameter is a pointer to the object that responds to the
method call. This parameter is required for implementation languages having
no concept of objects, such as C. To call a SOM object’s method from C, you
must pass the object pointer as the first argument of the calling syntax. From
C++, however, you specify the object with the method call in the standard C++
manner (such as myPart->Externalize). The name for this parameter is always
somSelf, a convention upon which the macros in the implementation binding
file rely.

The environment parameter is a pointer to the environment data structure
defined by CORBA. (CORBA stands for Common Object Request Broker
Architecture, an interface standard promulgated by the Object Management
Group industry consortium.) The environment structure passes exception
information between the caller and the called method.

Default Method Calls B

By default, every stub method includes three statements. Listing B-7 shows the
default statements that appear in the som_SamplePart object’s InitPart method
definition.

Listing B-7 Stub method default statements

SampleCode_som_SamplePartData *somThis =
SampleCode_som_SamplePartGetData(somSelf);

SampleCode_som_SamplePartMethodDebug("SampleCode_som_SamplePart",
"som_SamplePart__InitPart");

SampleCode_som_SamplePart_parent_ODPart_InitPart(somSelf,ev,
storageUnit,partWrapper);

The first statement initializes a local pointer variable named somThis that
provides access to the instance variables (or attributes) of the class. The somThis

CookbookBook : SOMAppendix Page 200 Thursday, December 7, 1995 4:59 PM

A P P E N D I X B

System Object Model

Interface Definition Language 201

S
ystem

 O
bject M

odel
B

variable points to a SOM-generated data structure representing the instance
variables, which has a type created by appending the word Data to the class
name. Macros in the implementation binding file depend on the somThis
variable to create getter and setter methods for each instance variable.

The second of the three default statements aids debugging. It depends on the
SampleCode_som_SamplePartMethodDebug macro defined in the implementation
binding file. If the SOM global variable SOM_TraceLevel is set to 1 in the client
program, this macro produces a debugging message each time the method
executes.

The third default statement is a macro that invokes the inherited superclass
method of the same name. This statement is generated only for overridden
methods. As you fill in the function body of each method, you should delete
this statement or place it appropriately in your code: before or after the actions
you take in your override.

CookbookBook : SOMAppendix Page 201 Thursday, December 7, 1995 4:59 PM

CookbookBook : SOMAppendix Page 202 Thursday, December 7, 1995 4:59 PM

203

Index

A

AbortRelinquishFocus

 method 93
About command 87

ActivateFrame

 method 95

AdjustMenus

 method 85
aliases 24
APDA 14
Apple Guide help files 24

AttachSourceFrame

 method 60

B

BeginRelinquishFocus

 method 90

BeginUsingLibraryResources

 function 67,
68, 87

binding 129
build script 20
Build Support folder 19
bundle resources 123

C

C++ 188
C++ templates 181

CATCH_ALL

 macro 145

CFocus

 class 63

'cfrg'

 resource 127

CheckAndAddProperties

 method 99
CI Labs 15

CleanseContentProperty

 method 101

CloneInto

 method 104

ClonePartInfo

 method 112
Code Fragment Manager 118, 127, 185
code fragment resource 127

CommitRelinquishFocus

 method 91
constants 118
constructor 40
CORBA 148

CreateWindow

 method 50

D

debugging version of memory manager 169
development environment 19

DisplayFrameAdded

 method 53

DisplayFrameClosed

 method 59

DisplayFrameConnected

 method 55

DisplayFrameRemoved

 method 57
display frames 53
documents 25

DoDialogBox

 method 87
DrawEditor 139

DrawFrameView

 method 67

DrawIconView

 method 64
drawing 62

Draw

 method 62, 63

DrawThumbnailView

 method 66

E

editor identifier 130
Editors Folders 23
endian formats 154

ENDTRY

 macro 145, 148
environment parameter (SOM) 148–149
event 77
exception handling 144–153

SOM environment parameter 148–149
utility for 144–153

This document was created with FrameMaker 4.0.4

CookbookBook : CookbookIX Page 203 Thursday, December 7, 1995 4:59 PM

I N D E X

204

exceptions 180

ExternalizeContent

 method 104

Externalize

 method 98

ExternalizeStateInfo

 method 102

F

FacetAdded

 method 75

FacetRemoved

 method 76
fidelity 97, 130
file types 133
focus 57, 77, 95, 158

FocusAcquired

 method 93

FocusLost

 method 92
frame layout 53
frames 53

FrameShapeChanged

 method 61
full content view 67

G

GeometryChanged

 method 74
global variables 37

H

HandleEvent

 method 77, 78

HandleMenuEvent

 method 83

HandleMouseEvent

 method 80
heap 166

HighlightChanged

 method 74

I

icon 64
IDL 32, 194
initialization 39, 185
initialization routine 186

Initialize

 method 39, 44

InitPartFromStorage

 method 39, 42

InitPart

 method 39, 40
installation 23, 25
interface definition language 194

InternalizeContent

 method 105

InternalizeStateInfo

 method 106
ISO strings 131
iterators 182

K

kODErrOutOfMemory

 exception 146

kODNoError

 exception 146, 147

M

MemHeap

 type 166
memory 165
memory management

utility for 165–171
menus 123

MMAllocateClearIn

 utility function 168

MMAllocateClear

 utility function 167

MMAllocateHandle

 utility function 168

MMAllocateIn

 utility function 168

MMAllocate

 utility function 167

MMBeginHeapChecking

 utility function 170

MMBeginMemValidation

 utility function 170

MMBlockSize

 utility function 168

MMCopyHandle

 utility function 169

MMDisposeHeap

 utility function 167

MMDoesHeapExist

 utility function 170

MMEndHeapChecking

 utility function 170

MMEndMemValidation

 utility function 170

MMFreeHandle

 utility function 169

MMFree

 utility function 168

MMGetDefaultHeap

 utility function 167

MMGetHandleSize

 utility function 169

MMGetHeapInfo

 utility function 171

MMGetHeap

 utility function 168

CookbookBook : CookbookIX Page 204 Thursday, December 7, 1995 4:59 PM

I N D E X

205

MMHandle

 type 168

MMIsObject

 utility function 168

MMLockHandle

 utility function 169

MMNewHeap

 utility function 167

MMReallocate

 utility function 168

MMSetDefaultHeap

 utility function 167

MMSetHandleSize

 utility function 169
MMSetIsObject utility function 168
MMUnlockHandle utility function 169
MMUnlockPtr utility function 169
MMValidateAllHeaps utility function 171
MMValidateHandle utility function 170
MMValidateHeap utility function 171
MMValidateObject utility function 171
MMValidatePtr utility function 170
MMWalkHeap utility function 171
MPW 19

N

name mappings 129

O

objects 171
ODPart 32, 195
ODVolatile macro 153
Open method 46, 47

P

PartActivated method 94
part category 129
part kind 129
part window 47
part wrapper 32
PictureViewer 138
PostScript 161
precompiled headers 23
Purge method 115

Q

QuickDraw 139, 158

R

ReadPartInfo method 107
reference count 114, 172
ReleaseAll method 114
Release method 113
RERAISE macro 148
resources 23, 118, 122, 185
root part 46

S

SamplePart Class Definition 33
SamplePart part editor 31
samples 137
scope 195
session object 44
SetDirty method 117
SimpleText 138
SOM 32, 148, 150, 166
somInit method 39
SOM_Trace macro 40
SOM wrapper 195
SoundEditor 137
stationery 25
storage 97, 179

T

template classes 180
temporary objects 180
TextEditor 138
THROW_IF_ERROR macro 147
THROW_IF_NULL macro 146
THROW macro 144, 146
TRY macro 145, 147

CookbookBook : CookbookIX Page 205 Thursday, December 7, 1995 4:59 PM

I N D E X

206

U

user-interface focus set 95
UserStartup•OpenDoc file 19
utilities 143
utility 63

V

version numbers 124
View As Window command 90
view type 54
ViewTypeChanged method 70
volatile keyword (C++) 153

W

WindowActivating method 96
window properties 191
windows 50
wrapper class 32
WritePartInfo method 107, 110

CookbookBook : CookbookIX Page 206 Thursday, December 7, 1995 4:59 PM

CookbookBook : CookbookIX Page 207 Thursday, December 7, 1995 4:59 PM

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Proof pages
were created on an Apple LaserWriter Pro
printer. Final page negatives were output
directly from text files on an Agfa
Large-Format Imagesetter. Line art was
created using Adobe Illustrator

 and
Adobe Photoshop

. PostScript

, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino

 and display type is
Helvetica

. Bullets are ITC Zapf
Dingbats

. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER

Alan Spragens

DEVELOPMENTAL EDITOR

Laurel Rezeau

ILLUSTRATOR

Deb Dennis

PRODUCTION EDITOR

Alexandra Solinski

LEAD WRITER

Dave Bice

WRITING MANAGER

Trish Eastman

Special thanks to Steve Smith, for writing
and explaining the sample code, and to
Jens Alfke, for writing much of the
original utilities documentation.

Acknowledgments to Tantek Çelik, Sue
Dumont, Troy Gaul, Vincent Lo, David
McCusker, Nick Pilch, Richard Rodseth,
and Dave Stafford.

This document was created with FrameMaker 4.0.4

CookbookBook : Colophon Page 208 Thursday, December 7, 1995 4:59 PM

	OpenDoc Cookbook
	Contents
	Listings
	About This Book
	Who Should Read This Book
	Structure of This Book
	Typographic Conventions
	Special Font
	Types of Notes
	Coding Conventions

	Developer Products and Support
	APDA
	CI Labs

	Development Environment
	Setting Up
	OpenDoc Build Support

	Building SamplePart
	Using the Build Script
	Examples
	Setting OpenDoc Flags
	Using Precompiled Headers

	Installing OpenDoc
	Installer
	Editors Folders
	Resource Cache
	Aliases
	Apple Guide Help Files
	The Stationery Folder

	Installing and Running Part Editors
	Installing Part Editors
	Creating Stationery
	Creating Documents
	Running Parts

	SamplePart Tutorial
	Features of SamplePart
	SamplePart Structure
	SamplePart System Object Model Interface
	Calling Inherited Methods
	SOM Wrapper Class and Part Wrapper Object

	SamplePart File Structure

	SamplePart Class Definition
	Shared Global Variables
	Initialization
	The Constructor
	The InitPart Method
	The InitPartFromStorage Method
	The Initialize Method

	Opening the Part Into a Window
	The Open Method
	The CreateWindow Method

	Handling Frame Layout
	The DisplayFrameAdded Method
	The DisplayFrameConnected Method
	The DisplayFrameRemoved Method
	The DisplayFrameClosed Method
	The AttachSourceFrame Method
	The FrameShapeChanged Method

	Drawing the Part
	The Draw Method
	The DrawIconView Method
	The DrawThumbnailView Method
	The DrawFrameView Method
	The ViewTypeChanged Method
	The GeometryChanged Method
	The HighlightChanged Method
	The FacetAdded Method
	The FacetRemoved Method

	Handling Events
	Event Constants
	The HandleEvent Method
	The HandleMouseEvent Method
	The HandleMenuEvent Method
	The AdjustMenus Method
	The DoDialogBox Method
	The View As Window Command

	Activation
	The BeginRelinquishFocus Method
	The CommitRelinquishFocus Method
	The FocusLost Method
	The AbortRelinquishFocus Method
	The FocusAcquired Method
	The PartActivated Method
	The ActivateFrame Method
	The WindowActivating Method

	Persistent Storage
	The Externalize Method
	The CheckAndAddProperties Method
	The CleanseContentProperty Method
	The ExternalizeStateInfo Method
	The ExternalizeContent Method
	The CloneInto Method
	The InternalizeContent Method
	The InternalizeStateInfo Method
	The ReadPartInfo Method
	The WritePartInfo Method
	The ClonePartInfo Method
	The Release Method
	The ReleaseAll Method
	The Purge Method
	The SetDirty Method

	Defining Types and Constants
	Defining Resources
	OpenDoc- OLE Interoperability
	Menu IDs
	Bundle Resources
	Version Numbers
	Code Fragment Resources
	Name- Mapping Resources
	Mapping Kind to Category
	Mapping Editor to Kind
	Mapping ISO Strings to User- Readable Names
	Mapping Kind to Mac OS Type

	Where To Go From Here
	SoundEditor
	PictureViewer
	TextEditor
	DrawEditor
	ScriptRunner

	Appendixes
	OpenDoc Utilities
	Exception Handling (Except)
	Using the Exception- Handling Utility
	The Exception- Handling Scheme
	Throwing Exceptions
	Exception Handlers

	The SOM Environment Parameter
	Handling SOM Exceptions
	Automatic Environment Checking

	Coding Precautions
	Make Variables That You Modify Volatile

	Data Value Manipulation (FlipEnd)
	Conversion Functions
	Conversion Macros

	QuickDraw Focus Library (FocusLib)
	What the Focus Library Does
	What the Focus Library Does Not Do
	Using the Focus Library From C++
	Using the Focus Library From C
	PostScript Printing

	International Text (IText)
	Creation in default heap
	Destruction
	Duplication
	Accessing attributes
	Accessing the string

	Memory Management (ODMemory)
	Allocating Heaps
	Allocating Nonrelocatable Blocks
	Allocating Relocatable Blocks (Handles)
	Memory Debugging

	Object Handling (ODUtils)
	Standard Type Input and Output (StdTypIO)
	Boolean Values
	Short Values
	Long Values
	ISO String Values
	Type List Values
	Text Values
	Time Values
	Geometric Values
	Storage Unit Reference Values
	Icon Family Values

	Storage (StorUtil)
	Storage Utility Functions

	Temporary Objects (TempObj)
	Need for Temporary Objects
	Using Temporary Objects
	Pitfalls
	Using Temporary Iterators
	Adding New Temporary Classes
	Adding New Classes Using Templates
	Adding New Classes Without Using Templates
	Type- Checking Errors

	Resource Handling (UseRsrcM)
	Setting Up the Build System
	Initializing Your Library
	Accessing Your LibraryÕs Resources
	For C++ Users
	Resource- Loading Utilities

	Window Utilities (WinUtils)
	Retrieving Window Properties
	Using the Window Utilities

	Features of the System Object Model
	Development Process
	Interface Definition Language
	The SOM Interface of SamplePart
	The Class Definition
	Implementation Template
	Define and Include Directives
	Function Prototype
	Parameter List
	Default Method Calls

	Index

